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1 Review

There exists a transformation of coordinates to the system represented by[
ẋ1

ẋ2

]
=

[
Ao 0
A21 Auo

]
︸ ︷︷ ︸

T−1AT

[
x1

x2

]
+

[
Bo

0

]
︸ ︷︷ ︸
T−1B

u

y =
[
Co 0

]︸ ︷︷ ︸
CT

[
x1

x2

]

where (x1, x2) ∈ Cn−r × Cr. This is the observable decomposition. This follows from the second matrix
representation theorem and the fact that ker(O) is A-invariant and ker(C) ⊂ ∥⌉∇(O).

Analogously, the controllable decomposition is given by[
ẋ1

ẋ2

]
=

[
Ac A12

0 Auc

] [
x1

x2

]
+Bcu

y =
[
Cc Cuc

] [x1

x2

]
where (x1, x2) ∈ Cq × Cn−q. This follows from the fact that by the definition of the controllability matrix
R(C) ⊃ R(B), hence R(B) is in the subspace generated by the first q basis vectors. Given the controllable
decomposition, we have the following observations:

• we denote the controllable states as x1 and uncontrollable states as x2;

• the matrices Ac and Auc correspond to the dynamics of the controllable and uncontrollable states, respec-
tively;

• the matrix Bc corresponds to the coefficient of the control input to the controllable states;

• and, finally, the matrices Cuc and Cc correspond to the transformed output matrix C to these new
coordinates.

The details on how to construct this representation follow from results in [510], and is described in §??.

1.1 Stabilizability

Definition 1. The pair (A,B) is stabilizable if there is a similarity transform to the form (??) with Au

Hurwitz stable.

Theorem 2. The following are equivalent:

1. The continuous-time LTI system (A,B) is stabilizable

2. Every eigenvector of A⊤ corresponding to an eigenvalue with a positive or zero real part is not in the
kernel of B⊤.

3. (PBH test) rank([A− λI B]) = n for all λ ∈ C such that Re(λ) ≥ 0.
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4. There is a positive definite solution P = P⊤ ≻ 0 to the Lyapunov matrix inequality

AP + PA⊤ −BB⊤ < 0

Controller Synthesis. Like with controllability we can leverage the Lyapunov test for stabilizability in
item 3 above to synthesize stabilizing feedback controllers.

Consider
ẋ = Ax+Bu

and suppose this system is stabilizable (i.e. all unstable modes are in the controllable subspace). Let
K := 1

2B
⊤P−1 where P = P⊤ ≻ 0 solve the Lyapunov matrix inequality

AP + PA⊤ −BB⊤ < 0

This inequality can be rewritten as

(A− 1

2
BB⊤P−1)P + P (A− 1

2
BB⊤P−1)⊤ = (A−BK)P + P (A−BK)⊤ < 0

Multiplying this equation on both sides by Q := P−1, we obtain

Q(A−BK) + (A−BK)⊤Q < 0

so that since Q ≻ 0, by the Lyapunov stability theorem A−BK is Hurwitz stable. This in turn means that
the controller u = −Kx asymptotically stabilizes the system (A,B).

1.2 Detectability

Definition 3. A pair (A,C) is detectable if it is similar to a system in the standard form (??) with Auo a
Hurwitz matrix.

The above definition is stating that all unobservable modes are stable.

Theorem 4 (Detectability Tests). The following are equivalent:

1. The continuous-time LTI system (A,C) is detectable

2. Every eigenvector of A corresponding to an eigenvalue with a positive or zero real part is not in the kernel
of C.

3. (PBH test)

rank

([
A− λI

C

])
= n, ∀λ ∈ C : Re(λ) ≥ 0.

4. There is a positive definite solution P = P⊤ ≻ 0 to the Lyapunov matrix inequality

AP + PA⊤ − C⊤C < 0

Observer Synthesis. Analogous to the synthesis of stabilizing feedback, we can also use the tools in
this module to synthesis observers. This amounts to designing a state estimation scheme. Consider the
continuous time system

ẋ = Ax+Bu, y = Cx+Du

and let u = −Kx be a stabilizing feedback controller. When only the output y can be measured, the control
law cannot be implemented, but if the pair (C,A) is detectable, it should be possible to estimate x from the
system’s output up to an error that vanishes as t → ∞.
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Figure 1: Observer Detailed Block Diagram

We have already seen that for an observable system, the state can be recovered from the input and output
over an interval [t0, t1] using the observability Grammian. This just gives the value at a particular time.
What we want to do is design a method of recovering the state for all time.

An observer is a signal reconstruction device which provides an estimate of inaccessible (aka unobservable)
states.

There are several ways to derive the state equations for the full-state observer. The approach in these notes
is to model the observer state equations as a model of the actual system plus a correction term based on the
measured output and the estimate of what that output is expected to be.

Original system and observer:

ẋ = Ax+Bu,

y = Cx

˙̂x = (A− LC)x̂+Bu+ Ly

ŷ = Cx̂

where L ∈ Rn×p.

We call
e(t) = x(t)− x̂(t)

the estimation error which satisfies

ė = (A− LC)e

It therefore follows that if we can choose the feedback matrix L to be such that the system matrix (A−LC)
has negative real parts, then

x̂ → x, as t → ∞
(i.e. an asymptotic estimate) irrespective of the plant input u!

As we have already seen with pole placement, the gain matrix L of the full-state observer can be computed
using any of the methods used to compute the control gain matrix K. We will assume that the system
is completely observable. Therefore, the closed-loop eigenvalues of the observer can be placed at specified
locations through the choice of L. For the control problem with full-state feedback, the closed-loop system
matrix of interest is A − BK. Comparing that with the observer problem, the closed-loop system matrix
is A − LC. The structure of those two matrices is similar; only the order of the unknown matrix differs
between BK and LC.

Recall from [510] that the eigenvalues of a matrix and its transpose are the same. Hence, the observer
problem can be formulated the same way as the control problem by considering the matrix (A − LC)⊤ =
A⊤ − C⊤L⊤.
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1.3 Problems

Problem 1. (Lyapynov Test for Stabilizability.) Show that the system (A,B) is stabilizable if and only if there
exists P = P⊤ ≻ 0 such that

AP + PA⊤ −BB⊤ ≺ 0

Solution.
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Problem 2. (Stabilizability.) Consider the LTI system

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t)

We say a mode (aka eigenvalue) λk is a hidden uncontrollable mode if an only if

rank
[
λkI −A | B

]
< n

We say such a system is stabilizable iff there are no unstable uncontrollable hidden modes—that is, any
hidden uncontrollable mode λk must be in the open left half plane λk ∈ C◦

−. Prove or disprove the following
statement:

(A,B) stabilizable ⇐⇒ {A∗v = λv, v ̸= 0 =⇒ B∗v ̸= 0} ∀ λ ∈ C+

where C+ is the closed right half plane.

Solution.
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Problem 3. (Observer Design.) Consider the system

ẋ(t) =

[
−1 0
1 −1

]
x(t) +

[
2
0

]
u(t)

y(t) =
[
0 1

2

]
x(t)

Design an observer to place the poles of the observer at {−4,−4}.

Solution.


