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Topic: Stabilizability & Detectability
Lecturer: L.J. Ratliff

1 Review

There exists a transformation of coordinates to the system represented by
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where (z1,29) € C"~" x C". This is the observable decomposition. This follows from the second matrix
representation theorem and the fact that ker(O) is A-invariant and ker(C) C ||[]V(O).

Analogously, the controllable decomposition is given by
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where (21, 22) € C?7 x C"9. This follows from the fact that by the definition of the controllability matrix
R(C) D R(B), hence R(B) is in the subspace generated by the first ¢ basis vectors. Given the controllable
decomposition, we have the following observations:

e we denote the controllable states as x1 and uncontrollable states as xo;

e the matrices A. and Ay, correspond to the dynamics of the controllable and uncontrollable states, respec-
tively;

e the matrix B, corresponds to the coefficient of the control input to the controllable states;

e and, finally, the matrices Cy. and C. correspond to the transformed output matrix C' to these new
coordinates.

The details on how to construct this representation follow from results in [510], and is described in §?7.

1.1 Stabilizability

Definition 1. The pair (A, B) is stabilizable if there is a similarity transform to the form (??) with A,
Hurwitz stable.

Theorem 2. The following are equivalent:

1. The continuous-time LTT system (A, B) is stabilizable

2. Every eigenvector of AT corresponding to an eigenvalue with a positive or zero real part is not in the
kernel of B.

3. (PBH test) rank([A — AI B]) = n for all A € C such that Re(\) > 0.
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4. There is a positive definite solution P = PT = 0 to the Lyapunov matrix inequality

AP+ PAT —BBT <0

Controller Synthesis. Like with controllability we can leverage the Lyapunov test for stabilizability in
item 3 above to synthesize stabilizing feedback controllers.

Consider
T = Az + Bu

and suppose this system is stabilizable (i.e. all unstable modes are in the controllable subspace). Let
K := %BTP’1 where P = PT > 0 solve the Lyapunov matrix inequality

AP +PAT —BBT <0

This inequality can be rewritten as
1 1
m—iBBUf5P+Pm—§BBWVWH4A—BMP+PM—BKF<0

Multiplying this equation on both sides by @ := P~!, we obtain
Q(A—-BK)+(A-BK)'Q <0

so that since @ = 0, by the Lyapunov stability theorem A — BK is Hurwitz stable. This in turn means that
the controller u = — Kz asymptotically stabilizes the system (A, B).

1.2  Detectability

Definition 3. A pair (A, C) is detectable if it is similar to a system in the standard form (?7?) with A, a
Hurwitz matrix.

The above definition is stating that all unobservable modes are stable.
Theorem 4 (Detectability Tests). The following are equivalent:

1. The continuous-time LTT system (A4, C) is detectable

2. Every eigenvector of A corresponding to an eigenvalue with a positive or zero real part is not in the kernel
of C.

3. (PBH test)

rank <{A E,)J]> =n, YAeC: Re(A)>0.

4. There is a positive definite solution P = PT = 0 to the Lyapunov matrix inequality

AP+ PAT —CTC <0

Observer Synthesis. Analogous to the synthesis of stabilizing feedback, we can also use the tools in
this module to synthesis observers. This amounts to designing a state estimation scheme. Consider the
continuous time system

&= Ax+ Bu, y=Czx+ Du

and let u = —Kx be a stabilizing feedback controller. When only the output y can be measured, the control
law cannot be implemented, but if the pair (C, A) is detectable, it should be possible to estimate x from the
system’s output up to an error that vanishes as ¢ — co.
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Figure 1: Observer Detailed Block Diagram

We have already seen that for an observable system, the state can be recovered from the input and output
over an interval [to, 1] using the observability Grammian. This just gives the value at a particular time.
What we want to do is design a method of recovering the state for all time.

An observer is a signal reconstruction device which provides an estimate of inaccessible (aka unobservable)
states.

There are several ways to derive the state equations for the full-state observer. The approach in these notes
is to model the observer state equations as a model of the actual system plus a correction term based on the
measured output and the estimate of what that output is expected to be.

Original system and observer:

i = Ax + Bu,

y=Cx

&= (A-LC)%+ Bu+ Ly
g=C%

where L € R"*P,

We call

the estimation error which satisfies
é = (A-LC)e

It therefore follows that if we can choose the feedback matrix L to be such that the system matrix (A — LC)
has negative real parts, then
T —x, ast— 00

(i.e. an asymptotic estimate) irrespective of the plant input w!

As we have already seen with pole placement, the gain matrix L of the full-state observer can be computed
using any of the methods used to compute the control gain matrix K. We will assume that the system
is completely observable. Therefore, the closed-loop eigenvalues of the observer can be placed at specified
locations through the choice of L. For the control problem with full-state feedback, the closed-loop system
matrix of interest is A — BK. Comparing that with the observer problem, the closed-loop system matrix
is A — LC. The structure of those two matrices is similar; only the order of the unknown matrix differs
between BK and LC.

Recall from [510] that the eigenvalues of a matrix and its transpose are the same. Hence, the observer

problem can be formulated the same way as the control problem by considering the matrix (4 — LC)T =
AT —-CTLT.
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1.3 Problems

Problem 1. (Lyapynov Test for Stabilizability.) Show that the system (A, B) is stabilizable if and only if there
exists P = P = 0 such that
AP+ PAT —BB'" <0

Solution.
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Problem 2. (Stabilizability.) Consider the LTI system
& = Ax(t) + Bu(t)
y(t) = Ca()
We say a mode (aka eigenvalue) )i is a hidden uncontrollable mode if an only if
rank [\ — A | Bl <n

We say such a system is stabilizable iff there are no unstable uncontrollable hidden modes—that is, any
hidden uncontrollable mode A; must be in the open left half plane A\ € C°. Prove or disprove the following

statement:
(A, B) stabilizable <= {A"v =X, v#0 = Bw#0} Ve Cy

where C is the closed right half plane.

Solution.
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Problem 3. (Observer Design.) Consider the system

(t) = [‘11 _OJ 2(t) + M u(t)

y(t) = [0 3]a(t)

Design an observer to place the poles of the observer at {—4, —4}.

Solution.



