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1 Review

There exists a transformation of coordinates to the system represented by[
ẋ1

ẋ2

]
=

[
Ao 0
A21 Auo

]
︸ ︷︷ ︸

T−1AT

[
x1

x2

]
+

[
Bo

0

]
︸ ︷︷ ︸
T−1B

u

y =
[
Co 0

]︸ ︷︷ ︸
CT

[
x1

x2

]

where (x1, x2) ∈ Cn−r × Cr. This is the observable decomposition. This follows from the second matrix
representation theorem and the fact that ker(O) is A-invariant and ker(C) ⊂ ∥⌉∇(O).

Analogously, the controllable decomposition is given by[
ẋ1

ẋ2

]
=

[
Ac A12

0 Auc

] [
x1

x2

]
+Bcu

y =
[
Cc Cuc

] [x1

x2

]
where (x1, x2) ∈ Cq × Cn−q. This follows from the fact that by the definition of the controllability matrix
R(C) ⊃ R(B), hence R(B) is in the subspace generated by the first q basis vectors. Given the controllable
decomposition, we have the following observations:

• we denote the controllable states as x1 and uncontrollable states as x2;

• the matrices Ac and Auc correspond to the dynamics of the controllable and uncontrollable states, respec-
tively;

• the matrix Bc corresponds to the coefficient of the control input to the controllable states;

• and, finally, the matrices Cuc and Cc correspond to the transformed output matrix C to these new
coordinates.

The details on how to construct this representation follow from results in [510].

1.1 Stabilizability

Definition 1. The pair (A,B) is stabilizable if there is a similarity transform to the form[
ẋ1

ẋ2

]
=

[
Ac A12

0 Auc

] [
x1

x2

]
+Bcu

y =
[
Cc Cuc

] [x1

x2

]
with Au Hurwitz stable.
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Theorem 2. The following are equivalent:

1. The continuous-time LTI system (A,B) is stabilizable

2. Every eigenvector of A⊤ corresponding to an eigenvalue with a positive or zero real part is not in the
kernel of B⊤.

3. (PBH test) rank([A− λI B]) = n for all λ ∈ C such that Re(λ) ≥ 0.

4. There is a positive definite solution P = P⊤ ≻ 0 to the Lyapunov matrix inequality

AP + PA⊤ −BB⊤ < 0

Controller Synthesis. Like with controllability we can leverage the Lyapunov test for stabilizability in
item 3 above to synthesize stabilizing feedback controllers.

Consider
ẋ = Ax+Bu

and suppose this system is stabilizable (i.e. all unstable modes are in the controllable subspace). Let
K := 1

2B
⊤P−1 where P = P⊤ ≻ 0 solve the Lyapunov matrix inequality

AP + PA⊤ −BB⊤ < 0

This inequality can be rewritten as

(A− 1

2
BB⊤P−1)P + P (A− 1

2
BB⊤P−1)⊤ = (A−BK)P + P (A−BK)⊤ < 0

Multiplying this equation on both sides by Q := P−1, we obtain

Q(A−BK) + (A−BK)⊤Q < 0

so that since Q ≻ 0, by the Lyapunov stability theorem A−BK is Hurwitz stable. This in turn means that
the controller u = −Kx asymptotically stabilizes the system (A,B).

1.2 Detectability

Definition 3. A pair (A,C) is detectable if it is similar to a system in the standard form[
ẋ1

ẋ2

]
=

[
Ao 0
A21 Auo

]
︸ ︷︷ ︸

T−1AT

[
x1

x2

]
+

[
Bo

0

]
︸ ︷︷ ︸
T−1B

u

y =
[
Co 0

]︸ ︷︷ ︸
CT

[
x1

x2

]
with Auo a Hurwitz matrix.

The above definition is stating that all unobservable modes are stable.

Theorem 4 (Detectability Tests). The following are equivalent:

1. The continuous-time LTI system (A,C) is detectable

2. Every eigenvector of A corresponding to an eigenvalue with a positive or zero real part is not in the kernel
of C.

3. (PBH test)

rank

([
A− λI

C

])
= n, ∀λ ∈ C : Re(λ) ≥ 0.

4. There is a positive definite solution P = P⊤ ≻ 0 to the Lyapunov matrix inequality

AP + PA⊤ − C⊤C < 0
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Figure 1: Observer Detailed Block Diagram

Observer Synthesis. Analogous to the synthesis of stabilizing feedback, we can also use the tools in
this module to synthesis observers. This amounts to designing a state estimation scheme. Consider the
continuous time system

ẋ = Ax+Bu, y = Cx+Du

and let u = −Kx be a stabilizing feedback controller. When only the output y can be measured, the control
law cannot be implemented, but if the pair (C,A) is detectable, it should be possible to estimate x from the
system’s output up to an error that vanishes as t → ∞.

We have already seen that for an observable system, the state can be recovered from the input and output
over an interval [t0, t1] using the observability Grammian. This just gives the value at a particular time.
What we want to do is design a method of recovering the state for all time.

An observer is a signal reconstruction device which provides an estimate of inaccessible (aka unobservable)
states.

There are several ways to derive the state equations for the full-state observer. The approach in these notes
is to model the observer state equations as a model of the actual system plus a correction term based on the
measured output and the estimate of what that output is expected to be.

Original system and observer:

ẋ = Ax+Bu,

y = Cx

˙̂x = (A− LC)x̂+Bu+ Ly

ŷ = Cx̂

where L ∈ Rn×p.

We call
e(t) = x(t)− x̂(t)

the estimation error which satisfies

ė = (A− LC)e

It therefore follows that if we can choose the feedback matrix L to be such that the system matrix (A−LC)
has negative real parts, then

x̂ → x, as t → ∞
(i.e. an asymptotic estimate) irrespective of the plant input u!

As we have already seen with pole placement, the gain matrix L of the full-state observer can be computed
using any of the methods used to compute the control gain matrix K. We will assume that the system
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is completely observable. Therefore, the closed-loop eigenvalues of the observer can be placed at specified
locations through the choice of L. For the control problem with full-state feedback, the closed-loop system
matrix of interest is A − BK. Comparing that with the observer problem, the closed-loop system matrix
is A − LC. The structure of those two matrices is similar; only the order of the unknown matrix differs
between BK and LC.

Recall from [510] that the eigenvalues of a matrix and its transpose are the same. Hence, the observer
problem can be formulated the same way as the control problem by considering the matrix (A − LC)⊤ =
A⊤ − C⊤L⊤.

1.3 Problems

Problem 1. (Lyapynov Test for Stabilizability.) Show that the system (A,B) is stabilizable if and only if there
exists P = P⊤ ≻ 0 such that

AP + PA⊤ −BB⊤ ≺ 0

Solution. We first prove directly by contradiction that a solution to the matrix inequality exists implies that
(A,B) is stabilizable. The simplest way to do this is by using the eigenvector test. Assume that

AP + PA⊤ −BB⊤ ≺ 0

holds, and let x ̸= 0 be an eigenvector of A⊤ associated with the “unstable” eigenvalue λ; i.e., A⊤x = λx.
Then

x∗(AP + PA⊤)x < x∗BB⊤x = ∥B⊤x∥2

But the left hand side of this is equal to

(A⊤x∗)⊤Px+ x∗PA⊤x = λ∗x∗Px+ λx∗Px = 2Re(λ)x∗Px

Since P = P⊤ ≻ 0 and Re(λ) ≥ 0 we have that

0 ≤ 2Re(λ)x∗Px < ∥B⊤x∥2

Therefor x ̸∈ Ker(B) and hence the system is stabilizable.

For the other direction, we assume (A,B) is stabilizable. Let T be the similarity transform that takes the
system to the controllable decomposition:

Ā :=

[
Ac A12

0 Auc

]
= T−1AT and B̄ :=

[
Bc

0

]
= T−1B

We saw in Section 12.4 (regarding feedback stabilization based on the Lyapunov test) that controllability of
the pair (Ac, Bc) guarantees the existence of a positive-definite matrix Pc such that

AcPc + PcA
⊤
c −BcB

⊤
c = −Qc ≺ 0

On the other hand, since Auc is a stability matrix, we conclude from the Lyapunov stability theorem that
there exists a positive- definite matrix Pu such that

AucPu + PuA
⊤
uc = −Qu ≺ 0.

Define
P̄ = blkdiag(Pc, ρPu)
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for some scalar ρ > 0 to be determined in a min. Then we have that

ĀP̄ + P̄ Ā⊤ − B̄B̄⊤

=

[
Ac A12

0 Auc

]
blkdiag(Pc, ρPu) + blkdiag(Pc, ρPu)

[
Ac A12

0 Auc

]⊤
−
[
Bc

0

] [
Bc

0

]⊤
= −

[
Qc −ρA12Pu

−ρPuA
⊤
12 ρQu

]
It turns out that by making ρ positive, but sufficiently small, the right-hand side can be made negative-
definite. The proof is completed by verifying that

P = T

[
Pc 0
0 ρPu

]
T⊤

satisfies the matrix inequality.

Problem 2. (Stabilizability.) Consider the LTI system

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t)

We say a mode (aka eigenvalue) λk is a hidden uncontrollable mode if an only if

rank
[
λkI −A | B

]
< n

We say such a system is stabilizable iff there are no unstable uncontrollable hidden modes—that is, any
hidden uncontrollable mode λk must be in the open left half plane λk ∈ C◦

−. Prove or disprove the following
statement:

(A,B) stabilizable ⇐⇒ {A∗v = λv, v ̸= 0 =⇒ B∗v ̸= 0} ∀ λ ∈ C+

where C+ is the closed right half plane.

Solution. (=⇒): suppose (A,B) is stabilizable, but there exists a vector v = 0 such that A∗v = λv, B∗v = 0.
This implies that

v∗A = λ̄v∗, v∗B = 0

Hence,
v∗(A+BF ) = λ̄v∗ ∀F

Since Acl = A+BF has an eigenvalue in C̄+, this contradicts that the realization is stabilizable.

(⇐=): Suppose
{A∗v = λv, v ̸= 0 =⇒ B∗v ̸= 0} ∀ λ ∈ C+

but (A,B) not stabilizable. We can put the realization in kalman decomposition form:

A+BF =

[
A11 +B1F ∗

0 A22

]
where A22 is not stable (since (A,B) not stabilizable). Then there exists w ̸= 0 such that w∗A22 = λw∗,
λ ∈ C̄+. We get that

v∗(A+BF ) =
[
0 w∗] (A+BF ) =

[
0 w∗] [A11 +B1F ∗

0 A22

]
=

[
0 λw∗] = λv∗, ∀F
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Choosing F = 0, we obtain v∗A = λv∗ and

v∗B =
[
0 w∗] [B1

0

]
= 0

Thus, we have found a vector v ̸= 0 where B∗v = 0 which is a contradiction.

Problem 3. (Observer Design.) Consider the system

ẋ(t) =

[
−1 0
1 −1

]
x(t) +

[
2
0

]
u(t)

y(t) =
[
0 1

2

]
x(t)

Design an observer to place the poles of the observer at {−4,−4}.

Solution. It is easy to check that the system is completely observable. Let L = (ℓ1, ℓ2) be the unknown
observer gain. Write the generic state estimation matrix

A− LC =

[
−1 0
1 −1

]
−

[
ℓ1
ℓ2

] [
0 1

2

]
=

[
−1 − 1

2ℓ1
1 −1− 1

2ℓ2

]
The characteristic polynomial of the observer is

det(λI −A+ LC) = λ2 +

(
2 +

1

2
ℓ2

)
λ+

1

2
ℓ2 +

1

2
ℓ1 + 1

Impose the polynomial equals the desired one

(λ+ 4)2 = λ2 + 8λ+ 16

Then we solve the linear system of equations in ℓ1, ℓ2 to get

ℓ1 = 18, ℓ2 = 12

The resulting Luenberger observer is

dx̂

dt
=

[
−1 −9
1 −7

]
x̂(t) +

[
2
0

]
+

[
18
12

]
y(t)

Stabilization Through Output Feedback. Consider again the following LTI system

ẋ = Ax+Bu, y = Cx

that is asymptotically stabilized by the state feedback control law

u = −Kx

and let
˙̂x = Ax̂+Bu− L(ŷ − y), ŷ = Cx̂

be a state estimator for which A− LC is a stability matrix. If the state x cannot be measured, one may be
tempted to use the state estimate x̂ instead of the actual state x in the control—i.e,

u = −Kx̂

This results in a controller with the following state-space model

˙̂x = Ax̂+Bu− L(Cx̂− y), u = −Kx̂

⇐⇒ ˙̂x = (A− LC −BK)x̂+ Ly u = −Kx̂
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To study whether or not the closed loop system is stable we recall that

ė = (A− LC)e

and
ẋ = Ax+Bu = (A−BK)x−BKe

Putting these together we have the dynamcis[
ẋ
ė

]
=

[
A−BK −BK

0 A− LC

] [
x
e

]
The following theorem results from the triangular structure of this matrix.

Theorem 5. The closed loop of the LTI system with the output feedback controller u = −Kx̂ results in a
system whose eigenvalues are the union of the eigenvalues of the state feedback closed-loop matrix A−BK
with the eigenvalues of the state estimator matrix A− LC.

This is called separation of estimation and control.


