Topic: Stabilizability \& Detectability

Lecturer: L.J. Ratliff

1 Review

There exists a transformation of coordinates to the system represented by

$$
\begin{gathered}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{\circ} & 0 \\
A_{21} & A_{\mathrm{u}}
\end{array}\right]}_{T^{-1} A T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
B_{\mathrm{o}} \\
0
\end{array}\right]}_{T^{-1} B} u} \\
y=\underbrace{\left[\begin{array}{ll}
C_{\circ} & 0
\end{array}\right]}_{C T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{gathered}
$$

where $\left(x_{1}, x_{2}\right) \in \mathbb{C}^{n-r} \times \mathbb{C}^{r}$. This is the observable decomposition. This follows from the second matrix representation theorem and the fact that $\operatorname{ker}(\mathcal{O})$ is A-invariant and $\operatorname{ker}(C) \subset \|\rceil \nabla(\mathcal{O})$.

Analogously, the controllable decomposition is given by

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=} & {\left[\begin{array}{cc}
A_{\mathrm{c}} & A_{12} \\
0 & A_{\mathrm{uc}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+B_{\mathrm{c}} u } \\
y & =\left[\begin{array}{ll}
C_{\mathrm{c}} & C_{\mathrm{uc}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

where $\left(x_{1}, x_{2}\right) \in \mathcal{C}^{q} \times \mathbb{C}^{n-q}$. This follows from the fact that by the definition of the controllability matrix $\mathbb{R}(\mathcal{C}) \supset \mathbb{R}(B)$, hence $\mathbb{R}(B)$ is in the subspace generated by the first q basis vectors. Given the controllable decomposition, we have the following observations:

- we denote the controllable states as x_{1} and uncontrollable states as x_{2};
- the matrices A_{c} and A_{uc} correspond to the dynamics of the controllable and uncontrollable states, respectively;
- the matrix B_{c} corresponds to the coefficient of the control input to the controllable states;
- and, finally, the matrices C_{uc} and C_{c} correspond to the transformed output matrix C to these new coordinates.

The details on how to construct this representation follow from results in [510].

1.1 Stabilizability

Definition 1. The pair (A, B) is stabilizable if there is a similarity transform to the form

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=} & {\left[\begin{array}{cc}
A_{\mathrm{c}} & A_{12} \\
0 & A_{\mathrm{uc}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+B_{\mathrm{c}} u } \\
y & =\left[\begin{array}{ll}
C_{\mathrm{c}} & C_{\mathrm{uc}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

with A_{u} Hurwitz stable.

Theorem 2. The following are equivalent:

1. The continuous-time LTI system (A, B) is stabilizable
2. Every eigenvector of A^{\top} corresponding to an eigenvalue with a positive or zero real part is not in the kernel of B^{\top}.
3. $(\mathrm{PBH}$ test $) \operatorname{rank}([A-\lambda I B])=n$ for all $\lambda \in \mathbb{C}$ such that $\operatorname{Re}(\lambda) \geq 0$.
4. There is a positive definite solution $P=P^{\top} \succ 0$ to the Lyapunov matrix inequality

$$
A P+P A^{\top}-B B^{\top}<0
$$

Controller Synthesis. Like with controllability we can leverage the Lyapunov test for stabilizability in item 3 above to synthesize stabilizing feedback controllers.

Consider

$$
\dot{x}=A x+B u
$$

and suppose this system is stabilizable (i.e. all unstable modes are in the controllable subspace). Let $K:=\frac{1}{2} B^{\top} P^{-1}$ where $P=P^{\top} \succ 0$ solve the Lyapunov matrix inequality

$$
A P+P A^{\top}-B B^{\top}<0
$$

This inequality can be rewritten as

$$
\left(A-\frac{1}{2} B B^{\top} P^{-1}\right) P+P\left(A-\frac{1}{2} B B^{\top} P^{-1}\right)^{\top}=(A-B K) P+P(A-B K)^{\top}<0
$$

Multiplying this equation on both sides by $Q:=P^{-1}$, we obtain

$$
Q(A-B K)+(A-B K)^{\top} Q<0
$$

so that since $Q \succ 0$, by the Lyapunov stability theorem $A-B K$ is Hurwitz stable. This in turn means that the controller $u=-K x$ asymptotically stabilizes the system (A, B).

1.2 Detectability

Definition 3. A pair (A, C) is detectable if it is similar to a system in the standard form

$$
\begin{gathered}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{\circ} & 0 \\
A_{21} & A_{\mathrm{uo}}
\end{array}\right]}_{T^{-1} A T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
B_{\circ} \\
0
\end{array}\right]}_{T^{-1} B} u} \\
y=\underbrace{\left[\begin{array}{ll}
C_{\circ} & 0
\end{array}\right]}_{C T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{gathered}
$$

with $A_{\text {uo }}$ a Hurwitz matrix.
The above definition is stating that all unobservable modes are stable.
Theorem 4 (Detectability Tests). The following are equivalent:

1. The continuous-time LTI system (A, C) is detectable
2. Every eigenvector of A corresponding to an eigenvalue with a positive or zero real part is not in the kernel of C.
3. $(\mathrm{PBH}$ test $)$

$$
\operatorname{rank}\left(\left[\begin{array}{c}
A-\lambda I \\
C
\end{array}\right]\right)=n, \quad \forall \lambda \in \mathbb{C}: \operatorname{Re}(\lambda) \geq 0
$$

4. There is a positive definite solution $P=P^{\top} \succ 0$ to the Lyapunov matrix inequality

$$
A P+P A^{\top}-C^{\top} C<0
$$

Figure 1: Observer Detailed Block Diagram

Observer Synthesis. Analogous to the synthesis of stabilizing feedback, we can also use the tools in this module to synthesis observers. This amounts to designing a state estimation scheme. Consider the continuous time system

$$
\dot{x}=A x+B u, y=C x+D u
$$

and let $u=-K x$ be a stabilizing feedback controller. When only the output y can be measured, the control law cannot be implemented, but if the pair (C, A) is detectable, it should be possible to estimate x from the system's output up to an error that vanishes as $t \rightarrow \infty$.

We have already seen that for an observable system, the state can be recovered from the input and output over an interval $\left[t_{0}, t_{1}\right]$ using the observability Grammian. This just gives the value at a particular time. What we want to do is design a method of recovering the state for all time.

An observer is a signal reconstruction device which provides an estimate of inaccessible (aka unobservable) states.

There are several ways to derive the state equations for the full-state observer. The approach in these notes is to model the observer state equations as a model of the actual system plus a correction term based on the measured output and the estimate of what that output is expected to be.

Original system and observer:

$$
\begin{aligned}
\dot{x} & =A x+B u, \\
y & =C x \\
\dot{\hat{x}} & =(A-L C) \hat{x}+B u+L y \\
\hat{y} & =C \hat{x}
\end{aligned}
$$

where $L \in \mathbb{R}^{n \times p}$.
We call

$$
e(t)=x(t)-\hat{x}(t)
$$

the estimation error which satisfies

$$
\dot{e}=(A-L C) e
$$

It therefore follows that if we can choose the feedback matrix L to be such that the system matrix $(A-L C)$ has negative real parts, then

$$
\hat{x} \rightarrow x, \text { as } t \rightarrow \infty
$$

(i.e. an asymptotic estimate) irrespective of the plant input u !

As we have already seen with pole placement, the gain matrix L of the full-state observer can be computed using any of the methods used to compute the control gain matrix K. We will assume that the system
is completely observable. Therefore, the closed-loop eigenvalues of the observer can be placed at specified locations through the choice of L. For the control problem with full-state feedback, the closed-loop system matrix of interest is $A-B K$. Comparing that with the observer problem, the closed-loop system matrix is $A-L C$. The structure of those two matrices is similar; only the order of the unknown matrix differs between $B K$ and $L C$.

Recall from [510] that the eigenvalues of a matrix and its transpose are the same. Hence, the observer problem can be formulated the same way as the control problem by considering the matrix $(A-L C)^{\top}=$ $A^{\top}-C^{\top} L^{\top}$.

1.3 Problems

Problem 1. (Lyapynov Test for Stabilizability.) Show that the system (A, B) is stabilizable if and only if there exists $P=P^{\top} \succ 0$ such that

$$
A P+P A^{\top}-B B^{\top} \prec 0
$$

Solution. We first prove directly by contradiction that a solution to the matrix inequality exists implies that (A, B) is stabilizable. The simplest way to do this is by using the eigenvector test. Assume that

$$
A P+P A^{\top}-B B^{\top} \prec 0
$$

holds, and let $x \neq 0$ be an eigenvector of A^{\top} associated with the "unstable" eigenvalue λ; i.e., $A^{\top} x=\lambda x$. Then

$$
x^{*}\left(A P+P A^{\top}\right) x<x^{*} B B^{\top} x=\left\|B^{\top} x\right\|^{2}
$$

But the left hand side of this is equal to

$$
\left(A^{\top} x^{*}\right)^{\top} P x+x^{*} P A^{\top} x=\lambda^{*} x^{*} P x+\lambda x^{*} P x=2 \operatorname{Re}(\lambda) x^{*} P x
$$

Since $P=P^{\top} \succ 0$ and $\operatorname{Re}(\lambda) \geq 0$ we have that

$$
0 \leq 2 \operatorname{Re}(\lambda) x^{*} P x<\left\|B^{\top} x\right\|^{2}
$$

Therefor $x \notin \operatorname{Ker}(B)$ and hence the system is stabilizable.

For the other direction, we assume (A, B) is stabilizable. Let T be the similarity transform that takes the system to the controllable decomposition:

$$
\bar{A}:=\left[\begin{array}{cc}
A_{\mathrm{c}} & A_{12} \\
0 & A_{\mathrm{uc}}
\end{array}\right]=T^{-1} A T \quad \text { and } \quad \bar{B}:=\left[\begin{array}{c}
B_{\mathrm{c}} \\
0
\end{array}\right]=T^{-1} B
$$

We saw in Section 12.4 (regarding feedback stabilization based on the Lyapunov test) that controllability of the pair $\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ guarantees the existence of a positive-definite matrix P_{c} such that

$$
A_{\mathrm{c}} P_{c}+P_{c} A_{\mathrm{c}}^{\top}-B_{\mathrm{c}} B_{\mathrm{c}}^{\top}=-Q_{c} \prec 0
$$

On the other hand, since $A_{\text {uc }}$ is a stability matrix, we conclude from the Lyapunov stability theorem that there exists a positive- definite matrix P_{u} such that

$$
A_{\mathrm{uc}} P_{u}+P_{u} A_{\mathrm{uc}}^{\top}=-Q_{u} \prec 0
$$

Define

$$
\bar{P}=\operatorname{blkdiag}\left(P_{c}, \rho P_{u}\right)
$$

for some scalar $\rho>0$ to be determined in a min. Then we have that

$$
\begin{aligned}
\bar{A} \bar{P} & +\bar{P} \bar{A}^{\top}-\bar{B} \bar{B}^{\top} \\
& =\left[\begin{array}{cc}
A_{\mathrm{c}} & A_{12} \\
0 & A_{\mathrm{uc}}
\end{array}\right] \operatorname{blkdiag}\left(P_{c}, \rho P_{u}\right)+\operatorname{blkdiag}\left(P_{c}, \rho P_{u}\right)\left[\begin{array}{cc}
A_{\mathrm{c}} & A_{12} \\
0 & A_{\mathrm{uc}}
\end{array}\right]^{\top}-\left[\begin{array}{c}
B_{\mathrm{c}} \\
0
\end{array}\right]\left[\begin{array}{c}
B_{\mathrm{c}} \\
0
\end{array}\right]^{\top} \\
& =-\left[\begin{array}{cc}
Q_{c} & -\rho A_{12} P_{u} \\
-\rho P_{u} A_{12}^{\top} & \rho Q_{u}
\end{array}\right]
\end{aligned}
$$

It turns out that by making ρ positive, but sufficiently small, the right-hand side can be made negativedefinite. The proof is completed by verifying that

$$
P=T\left[\begin{array}{cc}
P_{c} & 0 \\
0 & \rho P_{u}
\end{array}\right] T^{\top}
$$

satisfies the matrix inequality.
Problem 2. (Stabilizability.) Consider the LTI system

$$
\begin{aligned}
\dot{x} & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

We say a mode (aka eigenvalue) λ_{k} is a hidden uncontrollable mode if an only if

$$
\operatorname{rank}\left[\begin{array}{l|l}
\lambda_{k} I-A & B]<n
\end{array}\right.
$$

We say such a system is stabilizable iff there are no unstable uncontrollable hidden modes-that is, any hidden uncontrollable mode λ_{k} must be in the open left half plane $\lambda_{k} \in \mathbb{C}_{-}^{\circ}$. Prove or disprove the following statement:

$$
(A, B) \text { stabilizable } \Longleftrightarrow\left\{A^{*} v=\lambda v, v \neq 0 \Longrightarrow B^{*} v \neq 0\right\} \forall \lambda \in \mathbb{C}_{+}
$$

where \mathcal{C}_{+}is the closed right half plane.

Solution. (\Longrightarrow) : suppose (A, B) is stabilizable, but there exists a vector $v=0$ such that $A^{*} v=\lambda v, B^{*} v=0$.
This implies that

$$
v^{*} A=\bar{\lambda} v^{*}, v^{*} B=0
$$

Hence,

$$
v^{*}(A+B F)=\bar{\lambda} v^{*} \forall F
$$

Since $A_{c l}=A+B F$ has an eigenvalue in $\overline{\mathbb{C}}_{+}$, this contradicts that the realization is stabilizable.
$(\Longleftarrow):$ Suppose

$$
\left\{A^{*} v=\lambda v, v \neq 0 \quad \Longrightarrow \quad B^{*} v \neq 0\right\} \forall \lambda \in \mathbb{C}_{+}
$$

but (A, B) not stabilizable. We can put the realization in kalman decomposition form:

$$
A+B F=\left[\begin{array}{cc}
A_{11}+B_{1} F & * \\
0 & A_{22}
\end{array}\right]
$$

where A_{22} is not stable (since (A, B) not stabilizable). Then there exists $w \neq 0$ such that $w^{*} A_{22}=\lambda w^{*}$, $\lambda \in \overline{\mathbb{C}}_{+}$. We get that

$$
v^{*}(A+B F)=\left[\begin{array}{ll}
0 & w^{*}
\end{array}\right](A+B F)=\left[\begin{array}{cc}
0 & w^{*}
\end{array}\right]\left[\begin{array}{cc}
A_{11}+B_{1} F & * \\
0 & A_{22}
\end{array}\right]=\left[\begin{array}{ll}
0 & \lambda w^{*}
\end{array}\right]=\lambda v^{*}, \forall F
$$

Choosing $F=0$, we obtain $v^{*} A=\lambda v^{*}$ and

$$
v^{*} B=\left[\begin{array}{ll}
0 & w^{*}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]=0
$$

Thus, we have found a vector $v \neq 0$ where $B^{*} v=0$ which is a contradiction.
Problem 3. (Observer Design.) Consider the system

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
-1 & 0 \\
1 & -1
\end{array}\right] x(t)+\left[\begin{array}{l}
2 \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & \frac{1}{2}
\end{array}\right] x(t)
\end{aligned}
$$

Design an observer to place the poles of the observer at $\{-4,-4\}$.

Solution. It is easy to check that the system is completely observable. Let $L=\left(\ell_{1}, \ell_{2}\right)$ be the unknown observer gain. Write the generic state estimation matrix

$$
A-L C=\left[\begin{array}{cc}
-1 & 0 \\
1 & -1
\end{array}\right]-\left[\begin{array}{l}
\ell_{1} \\
\ell_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -\frac{1}{2} \ell_{1} \\
1 & -1-\frac{1}{2} \ell_{2}
\end{array}\right]
$$

The characteristic polynomial of the observer is

$$
\operatorname{det}(\lambda I-A+L C)=\lambda^{2}+\left(2+\frac{1}{2} \ell_{2}\right) \lambda+\frac{1}{2} \ell_{2}+\frac{1}{2} \ell_{1}+1
$$

Impose the polynomial equals the desired one

$$
(\lambda+4)^{2}=\lambda^{2}+8 \lambda+16
$$

Then we solve the linear system of equations in ℓ_{1}, ℓ_{2} to get

$$
\ell_{1}=18, \quad \ell_{2}=12
$$

The resulting Luenberger observer is

$$
\frac{d \hat{x}}{d t}=\left[\begin{array}{cc}
-1 & -9 \\
1 & -7
\end{array}\right] \hat{x}(t)+\left[\begin{array}{l}
2 \\
0
\end{array}\right]+\left[\begin{array}{l}
18 \\
12
\end{array}\right] y(t)
$$

Stabilization Through Output Feedback. Consider again the following LTI system

$$
\dot{x}=A x+B u, \quad y=C x
$$

that is asymptotically stabilized by the state feedback control law

$$
u=-K x
$$

and let

$$
\dot{\hat{x}}=A \hat{x}+B u-L(\hat{y}-y), \quad \hat{y}=C \hat{x}
$$

be a state estimator for which $A-L C$ is a stability matrix. If the state x cannot be measured, one may be tempted to use the state estimate \hat{x} instead of the actual state x in the control-i.e,

$$
u=-K \hat{x}
$$

This results in a controller with the following state-space model

$$
\begin{aligned}
\dot{\hat{x}} & =A \hat{x}+B u-L(C \hat{x}-y), & & u=-K \hat{x} \\
\Longleftrightarrow \dot{\hat{x}} & =(A-L C-B K) \hat{x}+L y & & u=-K \hat{x}
\end{aligned}
$$

To study whether or not the closed loop system is stable we recall that

$$
\dot{e}=(A-L C) e
$$

and

$$
\dot{x}=A x+B u=(A-B K) x-B K e
$$

Putting these together we have the dynamcis

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{e}
\end{array}\right]=\left[\begin{array}{cc}
A-B K & -B K \\
0 & A-L C
\end{array}\right]\left[\begin{array}{l}
x \\
e
\end{array}\right]
$$

The following theorem results from the triangular structure of this matrix.
Theorem 5. The closed loop of the LTI system with the output feedback controller $u=-K \hat{x}$ results in a system whose eigenvalues are the union of the eigenvalues of the state feedback closed-loop matrix $A-B K$ with the eigenvalues of the state estimator matrix $A-L C$.

This is called separation of estimation and control.

