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Topic: Stabilizability & Detectability
Lecturer: L.J. Ratliff

1 Review

There exists a transformation of coordinates to the system represented by
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where (z1,22) € C"~7 x C". This is the observable decomposition. This follows from the second matrix
representation theorem and the fact that ker(O) is A-invariant and ker(C) C ||]V(O).

Analogously, the controllable decomposition is given by
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where (21, 22) € C? x C"9. This follows from the fact that by the definition of the controllability matrix
R(C) D R(B), hence R(B) is in the subspace generated by the first ¢ basis vectors. Given the controllable
decomposition, we have the following observations:

e we denote the controllable states as x1 and uncontrollable states as xo;

e the matrices A. and Ay, correspond to the dynamics of the controllable and uncontrollable states, respec-
tively;

e the matrix B, corresponds to the coefficient of the control input to the controllable states;

e and, finally, the matrices Cy. and C. correspond to the transformed output matrix C' to these new
coordinates.

The details on how to construct this representation follow from results in [510].

1.1 Stabilizability

Definition 1. The pair (A, B) is stabilizable if there is a similarity transform to the form
1| [Ac Aiz| |21
o Il g 1 R
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with A, Hurwitz stable.
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Theorem 2. The following are equivalent:

1. The continuous-time LTT system (A, B) is stabilizable

2. Every eigenvector of AT corresponding to an eigenvalue with a positive or zero real part is not in the
kernel of B.

3. (PBH test) rank([A — AI B]) = n for all A € C such that Re(A\) > 0.

4. There is a positive definite solution P = P > 0 to the Lyapunov matrix inequality

AP+ PAT —BBT <0

Controller Synthesis. Like with controllability we can leverage the Lyapunov test for stabilizability in
item 3 above to synthesize stabilizing feedback controllers.

Consider
T = Az + Bu

and suppose this system is stabilizable (i.e. all unstable modes are in the controllable subspace). Let
K = %BTP_1 where P = P = 0 solve the Lyapunov matrix inequality

AP+ PAT —BBT <0

This inequality can be rewritten as
1 1
Mf§BBWYUP+PM7§BBWVWE4AfBMP+PMfBKF<O

Multiplying this equation on both sides by Q := P~!, we obtain
Q(A—-BK)+(A-BK)'Q <0

so that since @ > 0, by the Lyapunov stability theorem A — BK is Hurwitz stable. This in turn means that
the controller u = —Kx asymptotically stabilizes the system (A, B).

1.2  Detectability

Definition 3. A pair (4, C) is detectable if it is similar to a system in the standard form

T - A, 0 x1 + B,
Eo|  |Aar Awl| |2 0"
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with A,, a Hurwitz matrix.

The above definition is stating that all unobservable modes are stable.

Theorem 4 (Detectability Tests). The following are equivalent:

1. The continuous-time LTI system (A, C) is detectable
2. Every eigenvector of A corresponding to an eigenvalue with a positive or zero real part is not in the kernel

of C.
3. (PBH test)

rmm<f4ch)::m VA€ C: Re()) > 0.

4. There is a positive definite solution P = PT = 0 to the Lyapunov matrix inequality
AP+PAT -CTC<0
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Figure 1: Observer Detailed Block Diagram

Observer Synthesis. Analogous to the synthesis of stabilizing feedback, we can also use the tools in
this module to synthesis observers. This amounts to designing a state estimation scheme. Consider the
continuous time system

&= Ax + Bu, y=Cz+ Du

and let u = — Kz be a stabilizing feedback controller. When only the output y can be measured, the control
law cannot be implemented, but if the pair (C, A) is detectable, it should be possible to estimate x from the
system’s output up to an error that vanishes as ¢t — oo.

We have already seen that for an observable system, the state can be recovered from the input and output
over an interval [to, 1] using the observability Grammian. This just gives the value at a particular time.
What we want to do is design a method of recovering the state for all time.

An observer is a signal reconstruction device which provides an estimate of inaccessible (aka unobservable)
states.

There are several ways to derive the state equations for the full-state observer. The approach in these notes
is to model the observer state equations as a model of the actual system plus a correction term based on the
measured output and the estimate of what that output is expected to be.

Original system and observer:

i = Ax + Bu,

y=Cx

&= (A-LC)%Z+ Bu+ Ly
g=Ct

where L € R"*P,

We call

the estimation error which satisfies
e = (A-LQC)e

It therefore follows that if we can choose the feedback matrix L to be such that the system matrix (A — LC)
has negative real parts, then
T —x, ast — 00

(i.e. an asymptotic estimate) irrespective of the plant input !

As we have already seen with pole placement, the gain matrix L of the full-state observer can be computed
using any of the methods used to compute the control gain matrix K. We will assume that the system
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is completely observable. Therefore, the closed-loop eigenvalues of the observer can be placed at specified
locations through the choice of L. For the control problem with full-state feedback, the closed-loop system
matrix of interest is A — BK. Comparing that with the observer problem, the closed-loop system matrix
is A — LC. The structure of those two matrices is similar; only the order of the unknown matrix differs
between BK and LC.

Recall from [510] that the eigenvalues of a matrix and its transpose are the same. Hence, the observer
problem can be formulated the same way as the control problem by considering the matrix (4 — LO) T =
AT —-CTLT.

1.3 Problems

Problem 1. (Lyapynov Test for Stabilizability.) Show that the system (A, B) is stabilizable if and only if there
exists P = PT = 0 such that
AP+ PAT —BB'" <0

Solution. We first prove directly by contradiction that a solution to the matrix inequality exists implies that
(A, B) is stabilizable. The simplest way to do this is by using the eigenvector test. Assume that

AP+ PAT —BBT <0

holds, and let = # 0 be an eigenvector of AT associated with the “unstable” eigenvalue \; i.e., ATz = Az.
Then
2*(AP 4+ PA" )z < 2*BB'z = ||B"z|?

But the left hand side of this is equal to
(AT2*)" Pz + 2*PATx = \*2* Pz 4+ A\x* Pz = 2Re(\)z* Px
Since P = PT = 0 and Re()\) > 0 we have that
0 < 2Re(\)z* Pz < |B z|?

Therefor z ¢ Ker(B) and hence the system is stabilizable.

For the other direction, we assume (A, B) is stabilizable. Let T be the similarity transform that takes the
system to the controllable decomposition:

B

0

i |Ac A2l _ o m
A.[O AHJT AT and B.{

} =T7'B
We saw in Section 12.4 (regarding feedback stabilization based on the Lyapunov test) that controllability of
the pair (A¢, B:) guarantees the existence of a positive-definite matrix P, such that

A.P.+ P.Al —B.B] =-Q.<0

On the other hand, since Ay is a stability matrix, we conclude from the Lyapunov stability theorem that
there exists a positive- definite matrix P, such that

AyePy + PLAL = —Q, < 0.

Define -
P = blkdiag(P., pPy)
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for some scalar p > 0 to be determined in a min. Then we have that
AP+ PAT - BBT
T T
_ Ac A12 . . Ac A12 Bc Bc
= [ 0 AHJ blkdiag(P., pP,) + blkdiag(P., pP,,) [ 0 Auc] - [ 0 } [ 0 }

{ Qe —PA12Pu}
—pP AL, pQu

It turns out that by making p positive, but sufficiently small, the right-hand side can be made negative-
definite. The proof is completed by verifying that

[ -
pT[O pPu]T

satisfies the matrix inequality.
Problem 2. (Stabilizability.) Consider the LTI system

& = Ax(t) + Bu(t)
y(t) = Cu(t)

We say a mode (aka eigenvalue) )i is a hidden uncontrollable mode if an only if
rank [\, — A | Bl <n

We say such a system is stabilizable iff there are no unstable uncontrollable hidden modes—that is, any
hidden uncontrollable mode A; must be in the open left half plane A\; € C°. Prove or disprove the following

statement:
(A, B) stabilizable <= {A*v =X, v#0 = Bw#0} Ve Cy

where C is the closed right half plane.

Solution. (=): suppose (A4, B) is stabilizable, but there exists a vector v = 0 such that A*v = Av, B*v = 0.
This implies that -
v*A =", v"B=0
Hence, ~
v*(A+ BF) = A" VF

Since A, = A+ BF has an eigenvalue in C., this contradicts that the realization is stabilizable.

(<=): Suppose
{A'v=X v, v#0 = B'v#0} Ve Cy

but (A, B) not stabilizable. We can put the realization in kalman decomposition form:

A+BF|:A11+BlF *:|

0 Aso

where Ajy is not stable (since (A, B) not stabilizable). Then there exists w # 0 such that w* Ay = Aw*,
A€ Cp. We get that

A+ B F %

v*(A—i—BF):[O w*] (A+BF>:[O w*}|: 0 Ago

] = [O )xw*] = \v*, VF
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Choosing F' = 0, we obtain v*A = \v* and

v'B=[0 w'] ﬁﬂ =0

Thus, we have found a vector v # 0 where B*v = 0 which is a contradiction.

Problem 3. (Observer Design.) Consider the system

¢a)—[]1 jﬁ}x@)+[J14w
y(t) = [0 3]zt

Design an observer to place the poles of the observer at {—4, —4}.

Solution. It is easy to check that the system is completely observable. Let L = (¢1,¢3) be the unknown
observer gain. Write the generic state estimation matrix

-1 0 4 1 |1 —%61
A_LC_[l 1}_[62} [0 2]_[1 —1- 10,
The characteristic polynomial of the observer is
9 1 1 1

Impose the polynomial equals the desired one
(A +4)2 =2 +8\+ 16
Then we solve the linear system of equations in 1, {5 to get
01 =18, [l =12

The resulting Luenberger observer is
dz -1 -9 . 2 18
= [3 S fi] [

Stabilization Through Output Feedback. Consider again the following LTI system
&= Az + Bu, y=Cz
that is asymptotically stabilized by the state feedback control law
u=—-Kzx

and let )
t=At+Bu—L(j—vy), §=C%

be a state estimator for which A — LC' is a stability matrix. If the state x cannot be measured, one may be
tempted to use the state estimate & instead of the actual state x in the control—i.e,

uw=—Kz
This results in a controller with the following state-space model

i=Ai+Bu—L(Ci—y), uw=-Ki
— i=(A-LC-BK)i+Ly u=-Ki
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To study whether or not the closed loop system is stable we recall that
é=(A—-LC)e

and
&= Ax+ Bu=(A— BK)x — BKe

Putting these together we have the dynamcis
| |A-BK —-BK ||z
el 0 A—-LC| |e
The following theorem results from the triangular structure of this matrix.

Theorem 5. The closed loop of the LTI system with the output feedback controller u = —KZ results in a
system whose eigenvalues are the union of the eigenvalues of the state feedback closed-loop matrix A — BK
with the eigenvalues of the state estimator matrix A — LC.

This is called separation of estimation and control.



