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1 Solutions to LTV/LTI Systems

Consider the following LTV system:

ẋ(t) = A(t)x(t) +B(t)u(t) (state DE)

y(t) = C(t)x(t) +D(t)u(t) (read-out/output eqn.)

with initial data (t0, x0) and the assumptions on A(·), B(·), C(·), D(·), u(·) all being piecewise continuous
(PC):

• A(t) ∈ Rn×n

• B(t) ∈ Rn×m

• C(t) ∈ Rp×n

• D(t) ∈ Rp×m

The input function u(·) ∈ U , where U is the set of piecewise continuous functions from R+ → Rm.

This system satisfies the assumptions of our existence and uniqueness theorem. Indeed,

1. For all fixed x ∈ Rn, the function t ∈ R+\D → f(x, t) ∈ Rn is continuous where D contains all the points
of discontinuity of A(·), B(·), C(·), D(·), u(·)

2. There is a PC function k(·) = ∥A(·)∥ such that

∥f(ξ, t)− f(ξ′, t)∥ = ∥A(t)(ξ − ξ′)∥ ≤ k(t)∥ξ − ξ′∥ ∀t ∈ R+, ∀ξ, ξ′ ∈ Rn

Hence, by the above theorem, the differential equation has a unique continuous solution x : R+ → Rn which
is clearly defined by the parameters (t0, x0, u) ∈ R+ × Rn × U .

Theorem 1. (Existence of the state transition map/flow.) Under the assumptions and notation above, for
every triple (t0, x0, u) ∈ R+ × Rn × U , the state transition map

x(·) = ϕ(·, t0, x0, u) : R+ → Rn

is a continuous map well-defined as the unique solution of the state differential equation

ẋ(t) = A(t)x(t) +B(t)u(t)

with (t0, x0) such that x(t0) = x0 and u(·) ∈ U .

The solution to the LTV system is given by

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ

where Φ(t, t0) is the state transition matrix. Note that the state transition matrix satisfies the differential
equation

Ẋ = A(t)X, X(t0) = I.

1
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Continuous time LTI Systems. Consider now the general LTI system in state-space form:

ẋ = Ax+Bu (1)

y = Cx+Du (2)

where

• x ∈ Rn is the ”state” of the system

• u ∈ Rm is the ”input” to the system

• y ∈ Rp is the ”output” of the system

• A ∈ Rn×n describes how the state changes in time (dynamics)

• B ∈ Rn×m describes how the input effects the state dynamics

• C ∈ Rp×n describes how the state is transformed to the output

• D ∈ Rp×m describes how the input is transformed to the output (for the most part in this class we take
D = 0).

Discrete time LTI Systems. A discrete time LTI system is given by

x[k + 1] = Ax[k] +Bu[k] (3)

y[k] = Cx[k] +Du[k] (4)

2 Stability of Linear Systems

Definition 2 (Stable Equilibrium). The following are characterizations of stability (in the sense of Lya-
punov).

a. Marginally Stable: Consider the equilibrium point x∗ = 0.

x∗ is stable ⇐⇒ ∀ x0 ∈ Rn, ∀t0 ∈ Rn, t 7→ x(t) = Φ(t, t0)x0 is bounded ∀ t ≥ t0.

Note: the effect of initial conditions does not grow unbounded with time (but it may grow temporarily
during a transient phase).
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b. Asymptotic Stability. Consider the equilibrium point x∗ = 0.

x∗ = 0 is asymptotically stable ⇐⇒ x0 = 0 is stable and x(t) = Φ(t, t0)x0 −→ 0 as t → ∞.

Note: the effect of initial conditions eventually disappears with time.

c. Exponential Stability. Consider the equilibrium point x∗ = 0.

x∗ = 0 is exponentially stable ⇐⇒ ∃M,α > 0 : ∥x(t)∥ ≤ M exp(−α(t− t0))∥x0∥

2.1 Spectral Conditions for Stability

Proposition 3 (Continuous Time). Consider the differential equation ẋ = Ax, x(0) = x0. From the above
expression:

{exp(At) → 0 as t → ∞} ⇐⇒ {∀λk ∈ spec(A), Re(λk) < 0}

and

{t 7→ exp(At) is bounded on R+} ⇐⇒
{

∀λk ∈ spec(A), Re(λk) ≤ 0 &
mk = 1 when Re(λk) = 0

}

Claim 1.
ẋ = Ax is exponentially stable ⇐⇒ spec(A) ⊂ C◦

−

Linearized System Stability. Consider a general non-linear system

ẋ = f(x), x ∈ Rn

with an equilibrium point x∗ such that f(x∗) = 0. Recall that the local linearization around x∗ is given by

˙̃x = Ax̃

with x̃ = x − x∗ and A := Df(x∗). The following theorem is the celebrated Hartman-Grobman theorem
which states that trajectories of the nonlinear system are ”equivalent” to trajectories of the linearization
in a neighborhood of an equilibrium, and hence we can assess (local) stability of the nonlinear system by
assessing stability of the linearized system.1

Theorem 4 (Hartman-Grobman). Consider a nonlinear dynamical system ẋ = f(x) with an equilibrium
point x∗ (i.e. f(x∗) = 0). If the linearization of the system A := Dxf(x)|x=x∗ has no zero or purely imaginary
eigenvalues then there exists a homeomorphism (i.e., a continuous map with a continuous inverse) from a
neighborhood U of x∗ into Rn,

h : U → Rn,

taking trajectories of the nonlinear system ẋ = f(x) and mapping them onto those of ˙̃x = Ax̃. In particular,
we have that x∗ maps to the equilibrium of the linearized system—i.e., h(x∗) = 0.

The above theorem directly translates to the following corollary.

Corollary 5. Suppose that f ∈ C2(Rn,R). If the linearized system is exponentially stable, then there exists
a ball B ⊂ Rn around x∗ and constants c, λ > 0 such that for every solution x(t) to the nonlinear system
that starts at x(t0) ∈ B, we have

∥x(t)− x∗∥ ≤ ce−λ(t−t0)∥x(t0)− x∗∥.

This means that the properties of the linearized system are preserved in the nonlinear system.

1If you are interested in learning more about nonlinear systems, I suggest Shankar Sastry’s book ”Nonlinear Systems” [sas-
try2013nonlinear].
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Numerical Integration. Spectral stability properties are also important for numerical integration schemes
such as forward and backward Euler. In particular choosing the step size for the integration scheme deter-
mines the stability of the discrete time update equation, and the choice of step size depends on the eigenvalues
of A.

2.2 Lyapunov Stability

Consider a general dynamical system
ẋ = f(x)

Without loss of generality we will discuss critical points at x = 0. Recall the definitions of stability:

• stable: an equilibrium x = 0 is stable if for all t0 ≥ 0 and ϵ > 0, there exists δ(t0, ϵ) such that

∥x0∥ < δ(t0, ϵ) =⇒ ∥x(t)∥ < ϵ, ∀t ≥ t0

• uniformly stable: an equilibrium x = 0 is uniformly stable if δ can be chosen independent of t0

• asymptotically stable: an equilibrium point x∗ = 0 of ẋ = f(x) is said to be asymptotically stable if
for every trajectory x(t) we have that x(t) → 0 as t → ∞

Beyond the spectral conditions we saw last time for linear systems and local linearizations for nonlinear
systems (by way of Hartman Grobman), another method to check for stability is to construct a function
(namely, a Lyapunov function) which acts as a certificate for stability.

Theorem 6 (Lyapynov Theorem). Consider the dynamical system defined by f ∈ C1(Rn,R). Let W be
an open subset of Rn containing the equilibrium point x∗—i.e., f(x∗) = 0. Suppose that there exists a real-
valued function V ∈ C1 such that V (x∗) = 0 and V (x) > 0 when x ̸= x∗. Then, the following implications
hold:

a. V̇ (x) ≤ 0, ∀x ∈ W =⇒ x∗ is stable.

b. V̇ (x) < 0, ∀x ∈ W\{x∗} =⇒ x∗ is asymptotically stable.

c. V̇ (x) > 0, ∀x ∈ W\{x∗} =⇒ x∗ is unstable.

For linear systems, it turns out that Lyapunov functions take the form

V (z) = z⊤Pz

for some positive definite symmetric matrix P ≻ 0.

For a linear system ẋ = Ax, if
V (z) = z⊤Pz

then if the system is stable, we will have

V̇ (z) = (Az)⊤Pz + z⊤P (Az) = z⊤(A⊤P + PA)z < 0

This means that for the system to be asymptotically stable, we want it to be the case that for any Q =
Q⊤ ≻ 0, there exists a P = P⊤ ≻ 0 that solves

A⊤P + PA = −Q

If P ≻ 0, then the sublevel sets2 of this function are ellipsoids and bounded. Further, we have that

V (z) = z⊤Pz = 0 ⇐⇒ z = 0.

2i.e., {x| V (x) < a}
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If P ≻ 0, Q ⪰ 0, then all the trajectories of ẋ = Ax are bounded (i.e., Re(λi) ≤ 0 and if Re(λi) = 0, then λi

corresponds to a Jordan block of size one). Further, the ellipsoids {z| z⊤Pz ≤ a} are invariant sets.

Moreover, if we think of z⊤Pz as the (generalized) energy, then z⊤Qz is the associated (generalized) dissi-
pation.

Theorem 7. The following conditions are equivalent:

a. The system ẋ = Ax is asymptotically (equivalently exponentially) stable.

b. All the eigenvalues of A have strictly negative real parts.

c. For every symmetric positive definite matrix Q = Q⊤ ≻ 0, there exists a unique solution P to the
Lyapunov equation

A⊤P + PA = −Q.

Moreover, P is symmetric and positive-definite—i.e., P = P⊤ ≻ 0—and is given by

P =

∫ ∞

0

eA
⊤tQeAt dt.

d. There exists a symmetric positive-definite matrix P = P⊤ ≻ 0 for which the following Lyapunov matrix
inequality holds:

A⊤P + PA < 0

Why is Lyapunov useful? The Lyapunov equation allows us to synthesize controllers (as well as ob-
servers) that induce the system to be stable.

3 Controllability & Observability

• Controllability/Reachability is the property of a system concerning the ability to steer the state from
arbitrary x0 to arbitrary x1 on a given time interval [t0, t1].

• Observability is the property of a system concerning the ability to uniquely recover the initial state x0

given the observation y.

3.1 Controllability/Reachability

For simplicity, let D(·) ≡ 0 and consider our state space to be Rn.

Definition 8 (Controllable). The system D = (A(·), B(·), C(·)) is controllable on [t0, t1] if for all (x0, x1) ∈
Rn, there exists u[t0,t1] ∈ U which steers x0 at t0 to x1 at t1.

We tend to break controllability into two different concepts:

• Controllability from the origin (reachability): the reachability map is given by

Lru(t) =

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ

If this map is surjective (i.e., Im(Lr) = Rn) then the system is reachable.

• Controllability to the origin (often simply referred to as contorllability, hence, one should take care to
identify the precise definition in the given reference they are looking at): the controllability map is given
by

Lcu(t) =

∫ t

t0

Φ(t0, τ)B(τ)u(τ) dτ

If this map is surjective (i.e., Im(Lc) = Rn) then the system is controllable.
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We can compute the adjoint of these two maps L∗
r and L∗

c respectively, and define the corresponding gram-
mians

LrL∗
r =

∫ t1

t0

Φ(t1, τ)B(τ)B∗(τ)Φ(t1, τ)
∗ dτ

and

LcL∗
c =

∫ t1

t0

Φ(t0, τ)B(τ)B∗(τ)Φ(t0, τ)
∗ dτ

These are both linear operators and hence by the matrix representation theorem there is a finite dimension
matrix representation Wr ∈ Rn×n and Wc ∈ Rn×n, respectively. The finite rank operator lemma let’s us
show that

Im(Lr) = Im(LrL∗
r) = Im(Wr)

and
Im(Lc) = Im(LcL∗

c) = Im(Wc)

Moreover, we have the following equivalences:

(A(·), B(·)) controllable on [t0, t1] ⇐⇒ Im(Lr) = Rn

⇐⇒ Im(Lc) = Rn

⇐⇒ Im(LrL∗
r) = Rn

⇐⇒ Im(LcL∗
c) = Rn

⇐⇒ det(Wr) ̸= 0

⇐⇒ det(Wc) ̸= 0

LTI Systems. Things get much easier in the LTI setting. Cayley Hamilton allows us to show that
the condition on the controllability (reachability) grammian can be essentially reduced to checking a rank
condition on the so called controllability matrix:

C =
[
B AB A2B · · · An−1B

]
∈ Rn×nm

Fact 9. The following equality holds:
Im(Wr) = Im(C)

Let ∆ = t1 − t0 for some t1 > t0.

Theorem 10. The following are equivalent:

The LTI system is completely controllable on some [0,∆]

⇐⇒ rank
([
B AB · · · An−1B

])
= n (Rank Test)

⇐⇒ rank
([
sI −A B

])
= n, ∀ s ∈ C (PBH Test)

3.2 Observability

The pair (A(·), C(·)) is observable if given output y(t), the initial state x0 can be uniquely recovered.

Definition 11. The state x0 is unobservable on [t0, t1] if and only if its zero input response is zero on [t0, t1].

Analogous to controllability, we can define the observablility map Lo : Rn → Y[t0,t1] by

Lox0(·) = C(·)Φ(·, t0)x0
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That is, Lox0 is an operator in PC([t0, t1])) such that

(Lox0)(t) = y(t) =

∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ) dτ

We have the following equivalences:

(A(·), C(·)) is completely observable (CO) on [t0, t1] ⇐⇒ Ker(Lo) = {0}
⇐⇒ Ker(L∗

oLo) = {0}
⇐⇒ det(Wo) ̸= 0

where

Wo =

∫ t1

t0

Φ(τ, t0)
∗C(τ)∗C(τ)Φ(τ, t0) dτ

LTI Systems. Just as with controllability, we can use Cayley Hamilton to construct an observability
matrix:

O =


C
CA
CA2

...
CAn−1


Theorem 12 (LTI Observability Tests). The following are equivalent:

The LTI system is completely observable on some [0,∆]

⇐⇒ rank




C
CA
...

CAn−1


 = n (Rank Test)

⇐⇒ rank

([
sI −A

C

])
= n, ∀ s ∈ C (PBH Test)



Sec 2022.02.07 8

Problem 1. (Lipschitz and ODEs.) Consider the following two systems of differential equations:

(a)

{
ẋ1 = −x1 + et cos(x1 − x2)
ẋ2 = −x2 + 15 sin(x1 − x2)

and

(b)

{
ẋ1 = −x1 + x1x2

ẋ2 = −x2

1. Does (a) satisfy a global Lipschitz condition?

2. Does (b) satisfy a global Lipschitz condition?

3. For (b), your friend from MIT asserts that the solutions are uniquely defined for all possible initial
conditions and they all tend to zero for all initial conditions. Do you agree or disagree?
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Problem 2. ( Observability Map and Differential Equation). Recall that the observability map is given by

Lo : x0 → C(·)Φ(·, t)x0

and

L∗
oy(·) =

∫ t1

t0

Φ∗(τ, t0)C
∗(τ)y(τ) dτ

Show that L∗
oLo satisfies

Ẋ(t) = −A(t)∗X(t)−X(t)A(t)− C∗(t)C(t), X(t1) = 0
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Problem 3. (LTV Lyapunov.) We can actually construct a similar quadratic Lyapunov function for LTV
systems. Prove the following theorem.

Theorem 13. Assume that A(·) is bounded. If for some Q(t) > αI,

P (t) =

∫ ∞

t

Φ⊤(τ, t)Q(τ)Φ(τ, t) dτ

is bounded, then the origin is a uniformly asymptotically stable equilibrium point of ẋ = A(t)x.

Solution.
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Problem 4. (LTI Observability/Controllability.) Consider the LTI system given by

ẋ =

 0 1 0
0 0 1
−1 −2 −3

x+

10
0

u

y =
[
1 0 1

]
x

Is the system controllable? Observable?

Solution.
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Problem 5. (LTV Controllability.) Derive a matrix differential equation that

t 7→ Wc[t, t1] =

∫ t1

t

Φ(t, τ)B(τ)B∗(τ)Φ(t, τ) dτ

solves.
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Problem 6. (Pole Placement.) Consider the dynamic system

d4θ

dt4
+ α1

d3θ

dt3
+ α2

d2θ

dt2
+ α3

dθ

dt
+ α4θ = u

where u represents an input force, αi are real scalars. Assuming that d3θ
dt3 ,

d2θ
dt2 ,

dθ
dt and θ can all be mea-

sured, design a state variable feedback control scheme which places the closed–loop eigenvalues at s1 = −1,
s2 = −1, s3 = −1 + j1, s4 = −1− j.


