
EE/AA547-W22 2022.02.02

Topic: Observability/Controllability
Lecturer: L.J. Ratliff

1 Overview

• Controllability/Reachability is the property of a system concerning the ability to steer the state from
arbitrary x0 to arbitrary x1 on a given time interval [t0, t1].

• Observability is the property of a system concerning the ability to uniquely recover the initial state x0

given the observation y.

1.1 Controllability/Reachability

For simplicity, let D(·) ≡ 0 and consider our state space to be Rn.

Definition 1 (Controllable). The system D = (A(·), B(·), C(·)) is controllable on [t0, t1] if for all (x0, x1) ∈
Rn, there exists u[t0,t1] ∈ U which steers x0 at t0 to x1 at t1.

We tend to break controllability into two different concepts:

• Controllability from the origin (reachability): the reachability map is given by

Lru(t) =

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ

If this map is surjective (i.e., Im(Lr) = Rn) then the system is reachable.

• Controllability to the origin (often simply referred to as contorllability, hence, one should take care to
identify the precise definition in the given reference they are looking at): the controllability map is given
by

Lcu(t) =

∫ t

t0

Φ(t0, τ)B(τ)u(τ) dτ

If this map is surjective (i.e., Im(Lc) = Rn) then the system is controllable.

We can compute the adjoint of these two maps L∗
r and L∗

c respectively, and define the corresponding gram-
mians

LrL∗
r =

∫ t1

t0

Φ(t1, τ)B(τ)B∗(τ)Φ(t1, τ)
∗ dτ

and

LcL∗
c =

∫ t1

t0

Φ(t0, τ)B(τ)B∗(τ)Φ(t0, τ)
∗ dτ

These are both linear operators and hence by the matrix representation theorem there is a finite dimension
matrix representation Wr ∈ Rn×n and Wc ∈ Rn×n, respectively. The finite rank operator lemma let’s us
show that

Im(Lr) = Im(LrL∗
r) = Im(Wr)

and
Im(Lc) = Im(LcL∗

c) = Im(Wc)

1
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Moreover, we have the following equivalences:

(A(·), B(·)) controllable on [t0, t1]⇐⇒ Im(Lr) = Rn

⇐⇒ Im(Lc) = Rn

⇐⇒ Im(LrL∗
r) = Rn

⇐⇒ Im(LcL∗
c) = Rn

⇐⇒ det(Wr) ̸= 0

⇐⇒ det(Wc) ̸= 0

LTI Systems. Things get much easier in the LTI setting. Cayley Hamilton allows us to show that
the condition on the controllability (reachability) grammian can be essentially reduced to checking a rank
condition on the so called controllability matrix:

C =
[
B AB A2B · · · An−1B

]
∈ Rn×nm

Fact 2. The following equality holds:
Im(Wr) = Im(C)

Let ∆ = t1 − t0 for some t1 > t0.

Theorem 3. The following are equivalent:

The LTI system is completely controllable on some [0,∆]

⇐⇒ rank
([
B AB · · · An−1B

])
= n (Rank Test)

⇐⇒ rank
([
sI −A B

])
= n, ∀ s ∈ C (PBH Test)

1.2 Observability

The pair (A(·), C(·)) is observable if given output y(t), the initial state x0 can be uniquely recovered.

Definition 4. The state x0 is unobservable on [t0, t1] if and only if its zero input response is zero on [t0, t1].

Analogous to controllability, we can define the observablility map Lo : Rn → Y[t0,t1] by

Lox0(·) = C(·)Φ(·, t0)x0

That is, Lox0 is an operator in PC([t0, t1])) such that

(Lox0)(t) = y(t) =

∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ) dτ

We have the following equivalences:

(A(·), C(·)) is completely observable (CO) on [t0, t1] ⇐⇒ Ker(Lo) = {0}
⇐⇒ Ker(L∗

oLo) = {0}
⇐⇒ det(Wo) ̸= 0

where

Wo =

∫ t1

t0

Φ(τ, t0)
∗C(τ)∗C(τ)Φ(τ, t0) dτ
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LTI Systems. Just as with controllability, we can use Cayley Hamilton to construct an observability
matrix:

O =


C
CA
CA2

...
CAn−1


Theorem 5 (LTI Observability Tests). The following are equivalent:

The LTI system is completely observable on some [0,∆]

⇐⇒ rank




C
CA
...

CAn−1


 = n (Rank Test)

⇐⇒ rank

([
sI −A

C

])
= n, ∀ s ∈ C (PBH Test)

2 Problems

We will start with some warm up problems.

Problem 1. (Controllability & Observability.) Consider the linear system given by

ẋ =

[
−3 3
γ −4

]
x+

[
1
0

]
u

y =
[
1 1

]
x

for some parameter γ.

a. How should we choose γ such that the system is controllable but not observable?

b. How should we choose γ such that the system is observable but not controllable?

solution.

a. Choosing γ = −1, the system is controllable but not observable since

rank
([
B AB

])
= rank

([
1 −3
0 γ

])
= 2

and

rank

([
C
CA

])
= rank

([
1 1

−3 + γ −4

])
< 2

b. Choosing γ = 0, the system is observable but not controllable:

rank
([
B AB

])
= rank

([
1 −3
0 γ

])
= 1 < 2

and

rank

([
C
CA

])
= rank

([
1 1

−3 + γ −4

])
= 2
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Problem 2. (Controllability & Observability.) Consider the linear system given by

ẋ =

[
1 0
−1 −2

]
x

Suppose you have the ability to add one sensor and one actuator.

a. Which state should we control with the actuator to make the system controllable?

b. Which state should we measure with the sensor to make the system observable?

solution.

a. The controllability matrix is such that

rank
([
B AB

])
= rank

([
b1 b1
b2 −b1 − 2b2

])
Hence if we choose to control state 1 but not state 2, we have

rank
([
B AB

])
= rank

([
1 1
0 −1

])
= 2

On the other hand if we control state 2 but not 1, C drops rank.

b. The observability matrix is such that

rank

([
C
CA

])
= rank

([
c1 c2

c1 − c2 −2c2

])
Hence, if we observe state 1 and not state 2 we have

rank

([
C
CA

])
= rank

([
1 0
1 0

])
< 2

Yet if we observe state 2 and not state 1, we have that

rank

([
C
CA

])
= rank

([
0 1
−1 −2

])
= 2

Problem 3. (Reachability.) Consider a unit point mass under control of force—i.e.,[
ẋ
ẍ

]
=

[
0 1
0 0

] [
x
ẋ

]
+

[
0
1

]
u

This is equivalent to ẍ = u. Suppose we want to reach (x(T ), ẋ(T )) = (1, 0) from (x(0), ẋ(0)) = (0, 0) using
a controller of the form

u(t) =


u0, 0 ≤ t < T/10
u1, T/10 ≤ t < 2T/10
...

...
u10, 9T/10 ≤ t ≤ T

Find u = [u1 u2 · · · u10]
⊤.

Recall that the reachability map is

x(T ) =

∫ T

0

Φ(T, τ)B(τ)u(τ) dτ
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Hence, we have that

x(T ) =
[
L1 L2 · · · L10

]︸ ︷︷ ︸
Lr


u1

u2

...
u10

 ,

where

L1 =

(∫ T/10

0

Φ(T, τ)B(τ) dτ

)
=

T

10

[
T
1

]

L2 =

(∫ 2T/10

T/10

Φ(T, τ)B(τ) dτ

)
=

T

10

[
0.9T
1

]
...

L10 =
T

10

[
0.1T
1

]
Now to determine if we can drive the state to the desired position, we need to check if Lr is onto (surjective)
which means we need to check the rank of the resulting matrix to see if its equal to two. Indeed, we have

Lr =
T

10

[
T 0.9T · · · 0.1T
1 1 · · · 1

]
Then for example if T = 10, we have

Lr =

[
10 9 · · · 1
1 1 · · · 1

]
and

Wr = LrL⊤
r =

[
385 55
55 10

]
which is full rank. Thus, from the finite rank operator lemma, Im(Wr) = Im(Lr) implies that we can drive
the state to the deisred location with a piecewise constant controller.

What is interesting about this example, is that if we make the number of pieces in the piecewise constant
controller bigger and bigger then

LrL⊤
r →

∫ t1

t0

Φ(t1, τ)B(τ)B(τ)⊤Φ(t1, τ)
⊤ dτ

Therefore for the continuous time linear system is controllable over the interval [t0, t1] if and only if Wr is
full rank.

Problem 4. (Minimum Norm Control.) As we saw in the recorded lecture (and its worth re-emphasizing)
that the controllability Grammian is related to the cost of control. Given x(t0) = x0, find a control function
or sequence u(·) so that x(t1) = x1. Let xd = x1 − Φ(t1, t0)x0. Then we must have

xd = Lr,[t0,t1](u)

where Lr is the reachability map. Since we saw the continuous time version in the recorded lecture, for some
variety let’s focus on the discrete time case:

Lr,[k0,k1](u) =

k1−1∑
k=k0

Φ(k1, k + 1)B(k)u(k) = C(k0, k1)U

where

C(k0, k1) ∈ Rn×(k1−k0)m, and U =

 u(k0)
...

u(k1 − 1)
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Since xd ∈ Im(Lr,[k0,k1]) for solutions to exist, we assume Im(Lr,[k0,k1]) = Rn. This implies that Wr,[k0,k1]

is invertible. Generally there are multiple solutions. To resolve the non-uniqueness, we find the solution so
that

J(U) =
1

2

k1−1∑
k=k0

u(k)⊤u(k) = U⊤U

is minimized.

Solution. This is a constrained optimization problem (with J(U) as the cost to be minimized, and LrU−xd =
0 as the constraint). It can be solved using the Lagrange Multiplier method of converting a constrained
optimization problem into an unconstrained optimization.

Define an augmented cost function, with the Lagrange multipliers λ ∈ Rn as follows:

J̃(U, λ) = J(U) + λ⊤(LrU − xd)

The optimal solution necessarily satifies the first order conditions

∇U J̃ = 0 and ∇λJ̃ = 0

and the constraint. That is,
LrU

∗ = xd and L⊤
r λ

∗ + U∗ = 0

Solving we get that

λ∗ = −(LrL
⊤
r )

−1xd = −W−1
r xd and U∗ = −L⊤

r λ
∗ = L⊤

r W
−1
r xd

And, the optimal cost of control is

J(U∗) = x⊤
d W

−1
r LrL

⊤
r W

−1
r xd = x⊤

d W
−1
r xd

Thus, the inverse of the reachability Grammian tells us how difficult it is to perform a state transfer from
x = 0 to xd. In particular, if Wr is not invertible, for some xd, the cost is infinite.

Let’s look at a Geometric View Now. Geometrically, we can think of the cost as J = U⊤U , i.e. the
inner product of U with itself. In notation of inner product, this is

J = ⟨U,U⟩R

The advantage of the notation is that we can change the definition of inner product, e.g. ⟨U, V ⟩R = U⊤RV
where R is a positive definite matrix. The usual inner (dot) product has R = I. We say U and V are normal
to each other if ⟨U, V ⟩R = 0.

Any solution that satisfies the constraint must be of the form

(U − Up) ∈ Ker(Lr)

where Up is any particular solution—i.e., LrU
p = xd.

Fact: Let U∗ be the optimal solution, and U is any solution that satisfies the constraint. Then, (U −U∗) ⊥
U∗, i.e.

⟨(U − U∗), U∗⟩R = 0

which is the normal equation for the least norm solution problem.

Problem 5. (Pole Placement.) Consider

ẋ =

[
1 0
0 2

]
x+

[
1
1

]
u
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and the desired characteristic polynomial p(s) = (s + 1)(s + 3). Design a feedback controller of the form
u = −kx to place the poles at those of p(s).

solution. First,

rank C = rank

([
1 1
1 2

])
= 2

Then for u = −kx,

det(sI −A+ bk) = det

([
s 0
0 s

]
−
[
1 0
0 2

]
+

[
1
1

] [
k1 k2

])
= det

([
s− 1 + k1 k2

k1 s− 2 + k2

])
= (s− 1 + k1)(s− 2 + k2)− k2k1

= (s− 1)(s− 2) + k1(s− 2) + k2(s− 1)

= s2 − 3s+ 2 + k1s− 2k1 + k2s− k2

= s2 + (k1 + k2 − 3)s+ 2− 2k1 − k2

So then by equating coefficients of the above and

p(s) = s2 + 4s+ 3

we get

4 = k1 + k2 − 3 =⇒ 7− k2 = k1

3 = 2− 2k1 − k2 =⇒ 1 = −2k1 − k2 =⇒ 1 = −2(7− k2)− k2 = −14 + k2

so that
k1 = −8 and k2 = 15

and the closed loop system is thus

ẋ = (A−BK)x =

[
9 −15
8 −13

]
x

Problem 6. (Connections between Observability & Lyapunov.) Let (A,C) be observable and suppose that P
is any solution to A∗P + PA = −C∗C. Note that we are not assuming that L(·) is an invertible operator
here so there may be more than one solution. Show that P ⪰ 0 if and only if A is stable.

solution.
(=⇒): Suppose P ⪰ 0 but A is not stable. Then there is a non-trivial (i.e. v ̸= 0) vector v ∈ Cn and λ ∈ C
with Re(λ) ≥ 0 and Av = λv. For this (λ, v) pair we also have that v∗A∗ = λ̄v∗. Since (A,C) is observable,
we have that Cv ̸= 0. Note that

−∥Cv∥2 = −v∗C∗Cv = v∗(A∗P + PA)v = (λ̄+ λ)v∗Pv = 2Re(λ)v∗Pv

Since ∥Cv∥ > 0 and Re(λ) ≥ 0, it must be the case that Re(λ) > 0 and hence from above, we have v∗Pv < 0
meaning that P is not positive semidefinite. −→←−.

(⇐=): Suppose that A is stable. We will prove this implication directly. Since A is stable there is only one
solution to the equation A∗P + PA = −C∗C; we saw this in the examples on Lyapunov stability—namely
that if A stable this is equivalent to λ̄i + λj ̸= 0 for all λi, λj ∈ spec(A) which is in turn equivalent to the
operator L(·) being invertible. We also that the solution is

P =

∫ ∞

0

eA
∗τC∗CeAτ dτ
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This is clearly a positive semidefinite matrix.

Problem 7. (Controllable Cannonical Form.) We saw in the recorded lecture and the lecture notes that if
a system is completely controllable there is a transformation to the controllable canonical form. In many
references this form is actually called the ”controller canonical form” since its structure is invariant under
the use of a feedback controller (for SISO systems this is easy to see). An alternative to this is what is called
the ”controllability canonical form” which is given by

ẋ =


0 0 · · · 0 −an−1

1 0 · · · 0 −an−2

0 1 0 −an−3

...
. . .

...
0 0 1 −a0


︸ ︷︷ ︸

Ac

x+


1
0
0
...
0


︸︷︷︸
Bc

u

y =
[
c1 c2 c3 · · · cn

]︸ ︷︷ ︸
Cc

x

The controllability matrix for this system is the identity Cc = I and (Ac, Bc) is of course controllable.

Consider another system (A,B) and suppose that it is controllable. Derive a transformation such that
xc = T−1x is in controllable form:

Ac = T−1AT, Bc = T−1B

solution. First off the transformation of the controllability matrix is given by

C = TCc

This is because

C =
[
B AB · · · An−1B

]
=
[
TBc TAcT

−1TBc (TAcT
−1)2TBc · · · (TAcT

−1)n−1TBc

]
= T

[
Bc AcBc · · · An−1

c Bc

]
since (TAcT

−1)k = (TAcT
−1) · · · (TAcT

−1)︸ ︷︷ ︸
k times

= TAk
cT

−1. Then, since Cc = I, we have that T = C.

Another way to show this is to consider T of the form

T =
[
t1 t2 · · · tn

]
Then, from B = TBc we have that B = t1 (since Bc =

[
1 0 · · · 0

]⊤
). From AT = TAc we have that

[
At1 At2 · Atn

]
=
[
t1 t2 · · · tn

]

0 0 · · · 0 −an−1

1 0 · · · 0 −an−2

0 1 0 −an−3

...
. . .

...
0 0 1 −a0


=
[
t2 t3 · · · −t1an−1 − t2an−2 − · · · − tna0

]
from which we have that

t1 = B, t2 = At1 = AB, t3 = At2 = A2B, . . . , tn = An−1B

so that T = C.


