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Topic: Lyapunov Stability
Lecturer: L.J. Ratliff

1 Overview

Definition 1 (Stable Equilibrium). The following are characterizations of stability (in the sense of Lya-
punov).

a. Marginally Stable: Consider the equilibrium point x∗ = 0.

x∗ is stable ⇐⇒ ∀ x0 ∈ Rn, ∀t0 ∈ Rn, t 7→ x(t) = Φ(t, t0)x0 is bounded ∀ t ≥ t0.

Note: the effect of initial conditions does not grow unbounded with time (but it may grow temporarily
during a transient phase).

b. Asymptotic Stability. Consider the equilibrium point x∗ = 0.

x∗ = 0 is asymptotically stable ⇐⇒ x0 = 0 is stable and x(t) = Φ(t, t0)x0 −→ 0 as t → ∞.

Note: the effect of initial conditions eventually disappears with time.

c. Exponential Stability. Consider the equilibrium point x∗ = 0.

x∗ = 0 is exponentially stable ⇐⇒ ∃M,α > 0 : ∥x(t)∥ ≤ M exp(−α(t− t0))∥x0∥

Spectral Conditions for Stability.

Proposition 2 (Continuous Time). Consider the differential equation ẋ = Ax, x(0) = x0. From the above
expression:

{exp(At) → 0 as t → ∞} ⇐⇒ {∀λk ∈ spec(A), Re(λk) < 0}
and

{t 7→ exp(At) is bounded on R+} ⇐⇒
{

∀λk ∈ spec(A), Re(λk) ≤ 0 &
mk = 1 when Re(λk) = 0

}

Claim 1.
ẋ = Ax is exponentially stable ⇐⇒ spec(A) ⊂ C◦

−

Linearized System Stability. Consider a general non-linear system

ẋ = f(x), x ∈ Rn

with an equilibrium point x∗ such that f(x∗) = 0. Recall that the local linearization around x∗ is given by

˙̃x = Ax̃

with x̃ = x − x∗ and A := Df(x∗). The following theorem is the celebrated Hartman-Grobman theorem
which states that trajectories of the nonlinear system are ”equivalent” to trajectories of the linearization
in a neighborhood of an equilibrium, and hence we can assess (local) stability of the nonlinear system by
assessing stability of the linearized system.1

1If you are interested in learning more about nonlinear systems, I suggest Shankar Sastry’s book ”Nonlinear Systems” [sas-
try2013nonlinear].
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Theorem 3 (Hartman-Grobman). Consider a nonlinear dynamical system ẋ = f(x) with an equilibrium
point x∗ (i.e. f(x∗) = 0). If the linearization of the system A := Dxf(x)|x=x∗ has no zero or purely imaginary
eigenvalues then there exists a homeomorphism (i.e., a continuous map with a continuous inverse) from a
neighborhood U of x∗ into Rn,

h : U → Rn,

taking trajectories of the nonlinear system ẋ = f(x) and mapping them onto those of ˙̃x = Ax̃. In particular,
we have that x∗ maps to the equilibrium of the linearized system—i.e., h(x∗) = 0.

The above theorem directly translates to the following corollary.

Corollary 4. Suppose that f ∈ C2(Rn,R). If the linearized system is exponentially stable, then there exists
a ball B ⊂ Rn around x∗ and constants c, λ > 0 such that for every solution x(t) to the nonlinear system
that starts at x(t0) ∈ B, we have

∥x(t)− x∗∥ ≤ ce−λ(t−t0)∥x(t0)− x∗∥.

This means that the properties of the linearized system are preserved in the nonlinear system.

Numerical Integration. Spectral stability properties are also important for numerical integration schemes
such as forward and backward Euler. In particular choosing the step size for the integration scheme deter-
mines the stability of the discrete time update equation, and the choice of step size depends on the eigenvalues
of A.

2 Problems

Problem 1. (Stability and Eigenvalues). Consider the system

ẋ =



−3 1 0 0 0 0 0
0 −3 1 0 0 0 0
0 0 −3 0 0 0 0
0 0 0 −4 1 0 0
0 0 0 0 −4 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


︸ ︷︷ ︸

=:A

x

Is the system asymptotically stable? Is the system stable?

solution. The system is stable but not asymptotically stable since all its eigenvalues are in the CLHP and
the ones on the jω-axis have Jordan sub-blocks of size 1.

We can immediately see from the structure of A that the eigenvalues are in the closed left-half plane and that
the ones on the jω-axis have Jordan sub-blocks of size 1, so its (marginally) stable but not asymptotically
stable.

Another way to see this is the following: A system is considered asymptotically stable if and only if Φ(t, 0) → 0
as t → ∞ (cf. lecture notes). Using functions of matrices, we have

eAt =



e−3t −te−3t − 1
2 t

2e−3t 0 0 0 0
0 e−3t −te−3t 0 0 0 0
0 0 e−3t 0 0 0 0
0 0 0 e−4t −te−4t 0 0
0 0 0 0 e−4t 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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Problem 2. (Stiff Differential Equations.) In the simulation of several engineering systems we encounter
parasitic elements which result in the differential equation becoming “stiff”. A problem is stiff if it contains
widely varying time scales, i.e., some components of the solution decay much more rapidly than others.
For example, parasitic capacitances and inductances in electronic circuits. This has consequences not just
in terms of the behavior of the actual system (which can experience thigns like hysterisis etc) but also for
numerical simulation.

Fact 5. A stiff differential equation is numerically unstable unless the step size is extremely small. Stiff
differential equations are characterized as those whose exact solution has a term of the form e−αt where α is
a large positive constant. And, large derivatives of e−αt give error terms that are dominating in the solution.

This results in some state variables changing much more rapidly than the others. To represent this, consider
the system with x1 representing the “slow” variables and x2 the “fast” variables given by

ẋ1 = A11x1 +A12x2

ϵẋ2 = A21x1 +A22x2

with x1 ∈ Rn, x2 ∈ Rm and A22 non-singular.

a. Prove the following claim:

Claim 2. For the system above, m of the eigenvalues tend to ∞ like σ(A22)
ϵ , and the other n eigenvalues

tend to spec(A11 −A12A
−1
22 A21).

b. The system
ẋ1 = A11x1 +A12x2

0 = A21x1 +A22x2

is referred to as the singularly perturbed or low frequency approximation.

In electronic circuits, we also have in addition to parasitic (small) capacitances, coupling (large) capaci-
tances. These are modeled by

ẋ1 = A11x1 +A12x2 +A13x3

ϵẋ2 = A21x1 +A22x2 +A23x3

µẋ3 = A31x1 +A32x2 +A33x3

with ϵ > 0 small and µ > 0 large. A mid frequency model takes ϵ = 0, µ = ∞, a low frequency model takes
ϵ = 0 and sets µ = ∞ in the τ = t

µ time scale and a high frequency model sets µ = ∞ and then sets ϵ = 0

in the time scale τ = t
ϵ . Find the relationship between the eigenvalues of each if these models.
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Solution.

a. Prove the following claim:

Claim 3. For the system above, m of the eigenvalues tend to ∞ like σ(A22)
ϵ , and the other n eigenvalues

tend to spec(A11 −A12A
−1
22 A21).



Sec 2022.01.18 5

b. The system
ẋ1 = A11x1 +A12x2

0 = A21x1 +A22x2

is referred to as the singularly perturbed or low frequency approximation.

In electronic circuits, we also have in addition to parasitic (small) capacitances, coupling (large) capaci-
tances. These are modeled by

ẋ1 = A11x1 +A12x2 +A13x3

ϵẋ2 = A21x1 +A22x2 +A23x3

µẋ3 = A31x1 +A32x2 +A33x3

with ϵ > 0 small and µ > 0 large. A mid frequency model takes ϵ = 0, µ = ∞, a low frequency model
takes ϵ = 0 and sets µ = ∞ in the τ = t

µ time scale and a high frequency model sets µ = ∞ and then

sets ϵ = 0 in the time scale τ = t
ϵ . Find the relationship between the eigenvalues of each if these models.
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Nummerical Simulation Facts for Stiff Differential Equations.

• A problem is stiff if the stepsize is dictated by stability requirements rather than by accuracy require-
ments.

• A problem is stiff if explicit methods don’t work, or work only extremely slowly.
• A linear problem is stiff if all of its eigenvalues have negative real part, and the stiffness ratio (the ratio
of the magnitudes of the real parts of the largest and smallest eigenvalues) is large.

Problem 3. (Linearization of Nonlinear Systems.) Consider the nonlinear systems given below. Find the
equilibrium points and determine the type of stability they exhibit.

a. x ∈ R: ẋ = ax− x3 for arbitrary a ∈ R
Solution.
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b. Let a be some arbitrary parameter for the system

ẋ = x2 + y
ẏ = x− y + a

where (x, y) ∈ R× R. Solution.
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3 Lyapunov

Theorem 6 (Lyapynov Theorem). Consider the dynamical system defined by f ∈ C1(Rn,R). Let W be
an open subset of Rn containing the equilibrium point x∗—i.e., f(x∗) = 0. Suppose that there exists a real-
valued function V ∈ C1 such that V (x∗) = 0 and V (x) > 0 when x ̸= x∗. Then, the following implications
hold:

a. V̇ (x) ≤ 0, ∀x ∈ W =⇒ x∗ is stable.

b. V̇ (x) < 0, ∀x ∈ W\{x∗} =⇒ x∗ is asymptotically stable.

c. V̇ (x) > 0, ∀x ∈ W\{x∗} =⇒ x∗ is unstable.

For linear systems, it turns out that Lyapunov functions take the form

V (z) = z⊤Pz

for some positive definite symmetric matrix P ≻ 0.

For a linear system ẋ = Ax, if
V (z) = z⊤Pz

then
V̇ (z) = (Az)⊤Pz + z⊤P (Az) = −z⊤Qz

That is, if z⊤Pz is the (generalized) energy, then z⊤Qz is the associated (generalized) dissipation.

If P ≻ 0, then the sublevel sets2 of this function are ellipsoids and bounded. Further, we have that

V (z) = z⊤Pz = 0 ⇐⇒ z = 0.

If P ≻ 0, Q ⪰ 0, then all the trajectories of ẋ = Ax are bounded (i.e., Re(λi) ≤ 0 and if Re(λi) = 0, then λi

corresponds to a Jordan block of size one). Further, the ellipsoids {z| z⊤Pz ≤ a} are invariant sets.

Theorem 7. The following conditions are equivalent:

a. The system ẋ = Ax is asymptotically (equivalently exponentially) stable.

b. All the eigenvalues of A have strictly negative real parts.

c. For every symmetric positive definite matrix Q = Q⊤ ≻ 0, there exists a unique solution P to the
Lyapunov equation

A⊤P + PA = −Q.

Moreover, P is symmetric and positive-definite—i.e., P = P⊤ ≻ 0—and is given by

P =

∫ ∞

0

eA
⊤tQeAt dt.

d. There exists a symmetric positive-definite matrix P = P⊤ ≻ 0 for which the following Lyapunov matrix
inequality holds:

A⊤P + PA < 0

3.1 Problems

Problem 4. (Lyapunov Equation.) Consider the linear map L : Rn×n → Rn×n defined by L(P ) = A⊤P +PA.
Show that if λi + λ̄j ̸= 0, for all λi, λj ∈ σ(A), the equation

A⊤P + PA = Q

2i.e., {x| V (x) < a}
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has a unique symmetric solution for given symmetric Q.
Solution.

To prove this we need to show the following technical lemma.

Lemma 8. Any injective linear map A : Rn → Rn is also surjective.
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Now towards solving the problem, we show that L(P ) = Q has a unique solution. It suffices to show that
L(P ) 7→ A⊤P + PA is bijective or equivalently Ker(L) = {0}.

Assume A is diagonalizable. What follows can be generalized even if this is not possible - the qualitative
results still hold.

Lemma 9. The eigenvalues of L(P ) 7→ A⊤P + PA are λi + λ̄j for all λi, λj ∈ spec(A).


