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Topic: Solving ODEs
Lecturer: L.J. Ratliff

1 Review

Recall

ẋ(t) = A(t)x(t) +B(t)u(t) (state DE)

y(t) = C(t)x(t) +D(t)u(t) (read-out eqn.)

with initial data (t0, x0) and the assumptions on A(·), B(·), C(·), D(·), u(·) all being PC:

• A(t) ∈ Rn×n

• B(t) ∈ Rn×m

• C(t) ∈ Rp×n

• D(t) ∈ Rp×m

The input function u(·) ∈ U , where U is the set of piecewise continuous functions from R+ → Rm.

This system satisfies the assumptions of our existence and uniqueness theorem. Indeed,

1. For all fixed x ∈ Rn, the function t ∈ R+\D → f(x, t) ∈ Rn is continuous where D contains all the points
of discontinuity of A(·), B(·), C(·), D(·), u(·)

2. There is a PC function k(·) = ∥A(·)∥ such that

∥f(ξ, t)− f(ξ′, t)∥ = ∥A(t)(ξ − ξ′)∥ ≤ k(t)∥ξ − ξ′∥ ∀t ∈ R+, ∀ξ, ξ′ ∈ Rn

Hence, by the above theorem, the differential equation has a unique continuous solution x : R+ → Rn which
is clearly defined by the parameters (t0, x0, u) ∈ R+ × Rn × U .

Theorem 1. (Existence of the state transition map/flow.) Under the assumptions and notation above, for
every triple (t0, x0, u) ∈ R+ × Rn × U , the state transition map

x(·) = ϕ(·, t0, x0, u) : R+ → Rn

is a continuous map well-defined as the unique solution of the state differential equation

ẋ(t) = A(t)x(t) +B(t)u(t)

with (t0, x0) such that x(t0) = x0 and u(·) ∈ U .
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2 Problems

Problem 1. (Existence and Uniqueness.) Let A(t) and B(t) be n×n and n×m matrices, respectively, whose
whose elements are real (or complex) valued piecewise continuous functions on R+. Let u(·) be a piecewise
continuous function from R+ to Rm. Show that for any fixed u(·), the differential equation

ẋ(t) = A(t)x(t) +B(t)u(t)

satisfies the conditions of the Fundamental Theorem of ODEs (i.e. A1 and A2).

Solution.
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Problem 2. (Showing Uniqueness via Bellman-Gronwall.) To prove the uniqueness claim in the Fundamental
Theorem of ODEs, we use the so called Bellman-Gronwall Lemma.

Lemma 2 (Bellman-Gronwall). Let u(·), k(·) be real-valued, piecewise continuous functions on R+ and
assume u(·), k(·) > 0 on R+. Suppose c1 > 0, t0 ∈ R+. If

u(t) ≤ c1 +

∫ t

t0

k(τ)u(τ) dτ

then

u(t) ≤ c1 exp

(∫ t

t0

k(τ) dτ

)

Using the Bellman-Gronwall Lemma, show that the solution to the linear time varying differential equation
given below is unique:

ẋ(t) = A(t)x(t) +B(t)u(t)

x(t0) = x0

Solution.
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Problem 3.(Existence and Uniqueness of Solutions to Nonlinear Equations). Consider the pendulum equation
with friction and constant input torque:

ẋ1 = x2

ẋ2 = −g

ℓ
sinx1 −

k

m
x2 +

T

mℓ2

where x1 is the angle that the pendulum makes with the vertical, x2 is the angular rate of change, m is the
mass of the bob, ℓ is the length of the pendulum, k is the friction coefficient, and T is a constant torque.
Let Br(0) = {x ∈ R2 | ∥x∥ < r}. For this system (represented as ẋ = f(x)) determine whether f is locally
Lipschitz in x on Br(0) for sufficiently small r, locally Lipschitz in x on Br(0) for any finite r, or globally
Lipschitz in x (i.e. Lipschitz for all x ∈ R2).

ℓ

m

x1

Solution.
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Problem 4. (Floquet’s Theorem). First, consider the following fact.

Fact 3. If X(·) and Y (·) are fundamental matrices of

ẋ = A(t)x

then there exits a constant, nonsingular matrix C such that X(t) = Y (t)C. Fundamental matrices are
solutions to the matrix differential equation Ẋ(t) = A(t)X(t) such that det(X(t)) ̸= 0 for all t ∈ R+.

Consider the differential equation
ẋ(t) = A(t)x(t) (1)

where A(T+t) = A(t). Let Φ(t, t0) be the state transition matrix. It is easy to verify (by direct substitution)
that t 7→ Φ(t+ T, t0) is also a fundamental matrix. Indeed, we have

d

dt
Φ(t+ T, t0) = A(t+ T )Φ(t+ T, t0) = A(t)Φ(t+ T, t0).

The above fact implies then that
Φ(t+ T, t0) = Φ(t, t0)C

so that plugging in t = 0 and t0 = 0, we have that

Φ(T, 0) = C.

This is the first part of Floquet’s theorem! d Prove the following statements:

a. There exists a nonsingular, continuously differentiable matrix P (t) with period T and a constant possibly
complex matrix B such that

Φ(t, t0) = P (t)eB(t−t0)P (t0)
−1

b. By changing to a periodically varying system of coordinates

x(t) = P (t)ξ(t), ∀t ∈ R+,

the differenatial equation is equivalent to

ξ̇(t) = Bξ(t) ∀t ∈ R+.

You may use the following lemma.

Lemma 4 (Existence of Matrix Logarithm). Let M ∈ Cn×n be a square matrix. There exists a real matrix
S such that eS = M if and only if M is nonsingular and for every negative eigenvalue λ of M and for every
positive integer k the Jordan form of M has an even number of k × k blocks associated with λ.

More detail on this lemma can be found in [C&D].
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Solution.

a. There exists a nonsingular, continuously differentiable matrix P (t) := Φ(t, 0)e−Bt with period T and a
constant possibly complex matrix B such that

Φ(t, t0) = P (t)eB(t−t0)P (t0)
−1
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b. By changing to a periodically varying system of coordinates

x(t) = P (t)ξ(t), ∀t ∈ R+,

the differenatial equation is equivalent to

ξ̇(t) = Bξ(t) ∀t ∈ R+
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Note: There is a discrete time counterpart to this stating that a periodically varying difference equation can
be reduced to a time invariant linear difference equation via a simple change of coordinates (cf. [C&D]). We
will also see connections to stability of nonlinear dynamical systems around a periodic orbit.


