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Topic: Solving ODEs
Lecturer: L.J. Ratliff

1 Review

Continuous time LTI Systems. Consider now the general LTI system in state-space form:

ẋ = Ax+Bu (1)

y = Cx+Du (2)

where

• x ∈ Rn is the ”state” of the system

• u ∈ Rm is the ”input” to the system

• y ∈ Rp is the ”output” of the system

• A ∈ Rn×n describes how the state changes in time (dynamics)

• B ∈ Rn×m describes how the input effects the state dynamics

• C ∈ Rp×n describes how the state is transformed to the output

• D ∈ Rp×m describes how the input is transformed to the output (for the most part in this class we take
D = 0).

The solution to the CT LTI system in (1) is

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ) dτ

Discrete time LTI Systems. A discrete time LTI system is given by

x[k + 1] = Ax[k] +Bu[k] (3)

y[k] = Cx[k] +Du[k] (4)

The solution for the DT LTI system is given by

x[k] = Ak−k0x[k0] +

k−1∑
ℓ=k0

Ak−ℓ−1Bu[ℓ]
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2 Problems

Problem 1. (Sampled Data System.) You are given a time-invariant system

ẋ = Ax+Bu

that is sampled every T seconds. Denote x(kT ) by xk. Further, the input u is held constant between kT and
(k + 1)T , that is, u(t) = uk for t ∈ [kT, (k + 1)T ]. Derive the state equation for the sampled data system,
that is, give a formula for xk+1 in terms of xk and uk.

Solution. First, for the LTI continuous time system Φ(t, 0) = exp(At). Since xk = x(kT ),

xk+1 = x((k + 1)T ) = exp(A((k + 1)T − kT ))︸ ︷︷ ︸
exp(AT )

xk +

∫ (k+1)T

kT

exp(A((k + 1)T − τ))Buk dτ

= exp(AT )xk +

∫ T

0

exp(At′) dt′Buk

So, the state equation for the sampled data system is

xk+1 = Ãxk + B̃uk

where

Ã = exp(AT ), B̃ =

∫ T

0

exp(At′) dt′

Problem 2.Matrix Differential Equations. Consider the matrix differential equation

Ẋ = A1X +XA∗
2, X(t0) = X0

Show the solution is

X(t) = eA1(t−t0)X0

(
eA2(t−t0)

)∗
(5)

Solution. One the biggest ”tricks” or proof methods we will use in this class to show two things are equivalent
is the uniqueness aspect of the fundamental theorem of ODEs (M1-RL2). If two functions say f(t) and g(t)
solve the same ODE and satisfy the same initial condition, then we can invoke the fundamental theorem of
ODEs to conclude they are equivalent.

We will use this for this problem. We need to check the right and left hand side of (5) solve the same
ODE and have the same initial condition. Trivially X(t) solves the ODE and X(t0) = X0 (this is just by
definition). Hence, we can check that the right hand side eA1(t−t0)X0e

A∗
2(t−t0) solves the ODE and has the

same initial condition. The initial condition is trivial:

eA1(t0−t0)X0

(
eA2(t0−t0)

)∗
= I ·X0 · I = X0

Now, for the ODE:

d

dt

(
eA1(t−t0)X0

(
eA2(t−t0)

)∗)
= A1e

A1(t−t0)X0

(
eA2(t−t0)

)∗
+ eA1(t−t0)X0

(
eA2(t−t0)

)∗
A∗

2

where the second term follows from the fact that

d

dt

(
eA2(t−t0)

)∗
=

(
d

dt
eA2(t−t0)

)∗

=
(
A2e

A2(t−t0)
)∗

=
(
eA2(t−t0)

)∗
A∗

2
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To complete the proof, we invoke the fundamental theorem of ODEs, specifically the fact that solutions are
unique. Hence, the claimed solution holds

X(t) = eA1(t−t0)X0

(
eA2(t−t0)

)∗

Analogously, we note that (
eA2(t−t0)

)∗
= eA

∗
2(t−t0),

and
d

dt
eA

∗
2(t−t0) = A∗

2e
A∗

2(t−t0)

but since A∗
2 commutes with eA

∗
2(t−t0) (by Cayley Hamilton), we have that

A∗
2e

A∗
2(t−t0) = eA

∗
2(t−t0)A∗

2.

So we could have argued this way too.

Problem 3.Properties of State Transition Matrices. We will see in the next recorded lecture that for a linear
time varying system

ẋ = A(t)x, x(t0) = x0

that the solution is given by
x(t) = Φ(t, t0)x0

where Φ(t, t0) is what is known as the state transition matrix. It is a generalization of the matrix exponential
to the time varying case.

With this in mind, consider the differential equation

ẋ = (A+B)x

Show that the state transition matrix is
eAtΦM (t, t0)e

−At0 (6)

where
M(t) = e−AtBeAt,

and ΦM (t, t0) is the state transition matix of the differential equation

ż = M(t)z

Solution. First we know that the state transition matrix will be

e(A+B)(t−t0) = eAtΦM (t, t0)e
−At0

by checking the solve the same (matrix) ODE and initial condition. The initial condition should be I since
these are fundamental matrices. Just plugging in t = t0, we see that both sides evaluate to identity. Clearly,

Ẋ =
d

dt

(
e(A+B)(t−t0)

)
= (A+B)e(A+B)(t−t0) = (A+B)X

Now lets check that eAtΦM (t, t0)e
−At0 solves that same ODE. Indeed,

d

dt

(
eAtΦM (t, t0)e

−At0
)
= AeAtΦM (t, t0)e

−At0 + eAtΦ̇M (t, t0)e
−At0

= AeAtΦM (t, t0)e
−At0 + eAtM(t)ΦM (t, t0)e

−At0

= AeAtΦM (t, t0)e
−At0 + eAte−AtBeAtΦM (t, t0)e

−At0

= (A+B)eAtΦM (t, t0)e
−At0
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Hence, they solve the same ODE and thus, the claimed state transition matrix holds.

Problem 4.Dyadic Expansions One way to understand the effects of different modes of the input (i.e., poles
of the transfer function) on the state and output of the system is to express the solution in terms of a dyadic
expansion. Taking the Laplace transform of our dynamical system we have

sX = AX+BU ⇐⇒ X = (sI−A)−1BU =⇒ Y = (C(sI−A)−1B+D)U ⇐⇒ H =
Y

U
= C(sI−A)−1B+D

Suppose that A is semi-simple1 and has dyadic expansion

A = EΛN∗ =

n∑
i=1

λieiη
∗
i

where

E =

 | · · · |
e1 · · · en
| · · · |

 , N∗ =

−− η∗1 −−
...

...
...

−− η∗n −−


are nonsingular matrices such that EN∗ = N∗E = I and Λ = diag(λ1, . . . , λn).

a. Find an expression for H(s) in terms of the dyadic expansion.

b. Show that

x(t) =

n∑
i=1

ei exp(λit)

(
⟨ηi, x0⟩+

∫ t

0

e−λiτ ⟨B∗ηi, u(τ)⟩ dτ
)

Find an expression for the output y(t) given that

y = Cx+Du

c. Now, suppose that for some p ∈ Cm and x0 = 0, that u(t) = pδ(t). That is for k ∈ [m], the k-th scalar
input is an impulse of area pk applied at t = 0. Find an expression for the state.

Solution. a. Find an expression for H(s) in terms of the dyadic expansion.

(sI −A)−1 = (sI − EΛN∗)−1 = (sEN∗ − EΛN∗)−1

= (E(sI − Λ)N∗)−1

= (N∗)−1(sI − Λ)−1E−1

=

−− η∗1 −−
...

...
...

−− η∗n −−


−1

diag

(
1

s− λ1
, . . . ,

1

s− λn

) | · · · |
e1 · · · en
| · · · |

−1

=

 | · · · |
e1 · · · en
| · · · |

diag

(
1

s− λ1
, . . . ,

1

s− λn

)−− η∗1 −−
...

...
...

−− η∗n −−



=

 | · · · |
e1 · · · en
| · · · |


−− 1

s−λ1
η∗1 −−

...
...

...
−− 1

s−λn
η∗n −−


=

n∑
i=1

1

s− λi
eiη

∗
i

1A is semisimple if it has an eigenbasis, i.e., the geometric multiplicity of each eigenvalue of L equals its algebraic multiplicity.
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since N∗E = I = EN∗. Hence we have that

H(s) =

n∑
i=1

(s− λi)
−1Ceiη

∗
i B +D

where Ceiη
∗
i B is a dyad with column Cei and row η∗i B. Hence a pole contribution at λi disappears if and

only if the corresponding dyad is zero or equivalently Cei = 0 or η∗i B = 0. Also, the nonzero vectors Cei
and η∗i B represent the strength of the coupling of the i–th mode with the output and the input respectively.
In terms of practice, Cei depends on the location and sensitivity of the sensors while η∗i B depends on the
location and strength of actuators.

b. Show that

x(t) =

n∑
i=1

ei exp(λit)

(
⟨ηi, x0⟩+

∫ t

0

e−λiτ ⟨B∗ηi, u(τ)⟩ dτ
)

Find an expression for the output y(t) given that

y = Cx+Du

Let t0 = 0. We know that

x(t) = eAtx0 = eEΛN∗tx0 +

∫ t

0

eEΛN∗τBu(τ)dτ = EeΛtN∗x0 +

∫ t

0

EeΛτN∗Bu(τ)dτ

Hence

x(t) =

n∑
i=1

eie
λit

(
⟨ηi, x0⟩+

∫ t

0

e−λiτ ⟨B∗ηi, u(τ)⟩ dτ
)

as claimed. Hence,
n∑

i=1

Ceie
λit

(
⟨ηi, x0⟩+

∫ t

0

e−λiτ ⟨B∗ηi, u(τ)⟩ dτ
)
+Du(t)

c. Now, suppose that for some p ∈ Cm and x0 = 0, that u(t) = pδ(t). That is for k ∈ [m], the k-th scalar
input is an impulse of area pk applied at t = 0. Find an expression for the state.

Suppose u(t) = pδ(t) and x0 = 0. Then

x(t) =

n∑
i=1

eie
λit

(
⟨ηi, x0⟩+

∫ t

0

e−λiτ ⟨B∗ηi, pδ(τ)⟩ dτ
)

=

n∑
i=1

ei⟨B∗ηi, p⟩e−λit

since (
⟨ηi, x0⟩+

∫ t

0

e−λiτ ⟨B∗ηi, pδ(τ)⟩ dτ
)

= ⟨B∗ηi, p⟩

Some observations:

• ⟨B∗ηi, p⟩ measures the coupling between the impulsive vector input pδ(t) and the i th-mode; in particular,
if ⟨B∗ηi, p⟩ = 0 then the i-th mode is not excited by that particular input.

• If B∗ηi = 0, then by the expression for x(t) we see that no input can excite the i-th mode, i.e. the
actuators are not coupled to the i-th mode.

• if Cei = 0, then the expression for y shows that the i–th mode does not contribute to the output, i.e. the
sensors are not coupled to the i-th mode.


