
Mod4-RL2: Dynamic Programming & DT LQR

References:  
• Chapter 2.1.7, 10.4/10d.4 Callier & Desoer [C&D] 
• Lecture 10 (preview) and 20 — 22 Hespanha [JH]



DT LQR Problem

xt+1 = Axt + But, initial data x0state dynamics:

Objective:                 J(u) = x⊤
NQf xN +

N−1

∑
k=0

(x(k)⊤Qx(k) + u(k)⊤Ru(k))

min
u

{J(u) | xt+1 = Axt + But ∀t = 0,…, N}LQR Problem:

u = (u0, …, uN−1) ∈ ℝN⋅mcontrol input:

Cost Matrices: Q = Q⊤ ⪰ 0, Qf = Q⊤
f ⪰ 0, R = R⊤ ≻ 0



Comparing to Similar Problems
• Least norm input that steers  to the origin:  

• cost:  (i.e, ) 
• final state:  
• no state cost:  
• final state cost:  (e.g., )

x0
∥u∥2 = u⊤u R = I

xN = 0
Q = 0

Qf ≫ I Qf = 108 ⋅ I

• multi-objective optimization 
• cost matrices: R = ρ ⋅ I, Q = Qf = C⊤C

J(u) =
N

∑
k=0

∥y(k)∥2

output cost: Jo(u)

+ ρ
N−1

∑
k=0

∥u(k)∥2

input cost: Ji(u)

, y = Cx



Comparing to Similar Problems

• LQR as Least Squares:  
•   

• Stacked up state equation:
X := (x0, …, xN), u := (u0, …, uN−1)

x0
⋮
xN

X

=

0 ⋯ ⋯ ⋯
B 0 ⋯ ⋯

AB B 0 ⋯
⋮ ⋮ ⋱ ⋮

AN−1B AN−2B ⋯ B

G

u0
⋮

uN−1

u

+

I
A
⋮

AN

H

x0

• Least squares cost:

J(u) = diag(Q1/2, …, Q1/2, Q1/2
f )(Gu + Hx0)

2
+ diag(R1/2, …, R1/2)u

2



Bellman’s Principle
Consider the general DT dynamics 

and suppose we want to minimizer the cost



Dynamic Programming

• gives an efficient, recursive method to solve LQR least-squares problem; cost is  
•  DP is a useful and important idea on its own (it is applied in a number of domains 

including search, RL, MDPs, etc.)

O(N ⋅ n3)

Definition. For , define the value function  by t = 0,…, N Vt : ℝn → ℝ

Vt(z) = min
ut,…,uN−1

N−1

∑
k=t

(x⊤
k Qxk + u⊤

k Ruk) + x⊤
NQf xN s.t. xt = z, xk+1 = Axk + Buk k = t, …, N

•  is the minimum LQR cost-to-go starting from state  at time  
•  is the minimum LQR cost

Vt(z) z t
V0(x0)



Dynamic Programming Principle

Q: suppose we know . What is the optimal choice for ?Vt+1(z) ut



Example: Path Optimization



Showing the value function is quadratic



Showing the value function is quadratic



Summary of LQR via DP

• step 1:  
• step 2: 

𝚜𝚎𝚝 PN = Qf
𝚏𝚘𝚛 t = N, …,1, 𝚍𝚘 :

Pt−1 = Q + A⊤PtA − A⊤PtB(R + B⊤Pt+1B)−1B⊤PtA

• step 3: 𝚏𝚘𝚛 t = N, …,1, 𝚜𝚎𝚝 :

Kt = − (R + B⊤Pt+1B)−1B⊤Pt+1A

• step 4: 𝚏𝚘𝚛 t = N, …,1, 𝚜𝚎𝚝 :

u⋆
t := Ktxt


















