Mod4-RL1: Nonlinear Programming Primer

• **Goal**: introduce the basics of optimization for optimality

Goal: introduce the basics of optimization including necessary and sufficient conditions

Unconstrained Non-Linear Programming

Suppose you are asked to find the minimum of the function $F: \mathbb{R}^m \to \mathbb{R}$; i.e., solve the nonlinear program (NLP) given by

 $u \in \mathbb{R}^m$

The function f is called the objective.

- $V \subset \mathbb{R}^m$ containing *u* such that $F(u) \leq F(v)$, $\forall v \in V$.
- strict local minimizer: we say $u \in \mathbb{R}^m$ is a strict local minimizer if the inequality above is strict
- local maximizer: we say *u* is a local maximizer if it is a local minimizer for

 $\min - F(u)$

(NLP) min F(u)

• local minimizer: we say that $u \in \mathbb{R}^m$ is a local minimizer for NLP if there exists an open set

Sufficient and Necessary Conditions

 $\min_{u\in\mathbb{R}^m} F(u) \qquad (NLP)$

Constrained Non-Linear Programming

Suppose you are asked to find the minimum of the function $F : \mathbb{R}^m \to \mathbb{R}$; i.e., solve the nonlinear program (NLP) given by

> min F(u) $u \in \mathbb{R}^m$ s.t. f(u) = 0

(C-NLP)

Example: Reducing to Unconstrained

Alternative: Lagrange Multipliers

Alternative: Lagrange Multipliers

Alternative: Lagrange Multipliers