
Mod3-RL5: Stabilizability & Detectability

References:  
• Chapter 8 Callier & Desoer [C&D] 
• Chapter 11 and 15 Hespanha [JH] 
• [510] Lecture Notes (Finite Rank Operator Lemma, Hilbert Spaces, Adjoints, etc.)



Controllable/Observable Decomposition
When a system is not controllable (resp. not observable), it is often useful to be able to decompose the 
state space (and system) into the controllable and uncontrollable subspaces (resp., observable and 
unobservable subspaces). While the details can be found in the lectures notes, here we simply recall the 
main results:

Proposition. Both  and  are -invariant.Ker(𝒪) Im(𝒞) A

Given this proposition, we can
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With these fundamental decompositions we can discuss the concepts of stabilizability and detectabiility. 
And, more to the point observer and controller synthesis.



Stabilizability
Given a system that is not controllable, we would like to still be able to give guarantees on when we can 
stabilize the system. Intuitively, we should expect that we can stabilize a system if all the uncontrollable 
modes (or states) are already stable. This is the concept of stabilizability.
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Similarity transform to controllable decomposition:

• Controllable states  and uncontrollable states x1 x2

Definition: The pair  is stabilizable if there is a similarity transformation to the form above with  
Hurwitz stable.

(A, B) A𝚞𝚌



Stabilizability Theorem
Theorem. The following are equivalent: 
a. The pair  is stabilizable 
b. Every eigenvector of  corresponding to an eigenvalue with positive or zero real part is not in the 

kernel of  
c. (PBH Test)  such that . 
d. There is a positive definite solution  to the Lyapunov matrix inequality 

(A, B)
A⊤

B⊤

rank([A − λI B]) = n, ∀λ ∈ ℂ Re(λ) ≥ 0
P = P⊤ ≻ 0

AP + PA⊤ − BB⊤ ≺ 0

Like with controllability we can leverage the Lyapunov test for stabilizability in d above to 
synthesize stabilizing feedback controllers. 



Synthesizing Controllers

Consider the system  and suppose the system is stabilizable·x = Ax + Bu



Detectability
Given a system that is not observable, we would like to still be able to give guarantees on when we can 
unobservable states are well behaved.

Similarity transform to observable decomposition:

• Observable states  and unobservable states x1 x2

Definition: The pair  is detectable if there is a similarity transformation to the form above with  
Hurwitz stable.
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Detectability Theorem
Theorem. The following are equivalent: 
a. The pair  is detectable 
b. Every eigenvector of  corresponding to an eigenvalue with positive or zero real part is not in the 

kernel of  

c. (PBH Test)  such that . 

d. There is a positive definite solution  to the Lyapunov matrix inequality 

(A, C)
A

C

rank ([A − λI
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We can leverage similar synthesis tools as with stabilizability to synthesis what are known as observers. This 
amounts to designing an estimation scheme. 



Observer Design
Consider the system  and let  be a stabilizing feedback controller. When only 
the output  can be measured, the control law  cannot be implemented, but if the pair  is detectable, it 
should be possible to estimate  from the system’s output up to an error that vanishes as .

·x = Ax + Bu, y = Cx u = − Kx
y (A, C)

x t → ∞

Plant



Observer Design



Observer Design: Example
Consider the system ·x(t) = [−1 0

1 −1] x(t) + [2
0] u(t)

y(t) = [0 1
2 ] x(t)

Suppose we want to place the poles of the observer at .{−4, − 4}






