Mod3-RL4: Controllability & Observability of LTI Systems

References:

- Chapter 8 Callier & Desoer [C&D]
- Chapter 11 and 15 Hespanha [JH]

[510] Lecture Notes (Finite Rank Operator Lemma, Hilbert Spaces, Adjoints, etc.)

LTI Systems

Consider the following LTI system:

 $x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau) d\tau$ Solution:

Lecture Goals:

- Derive the reachability (controllability) and observability grammian for the LTI setting \bullet
- Develop various tests for controllability and observability

 $\dot{x} = Ax + Bu$ y = Cx + Du

Controllability/Reachability Grammian

Reachability Grammian:

$$W_r = \int_{t_0}^{t_1} \Phi(t_1, \tau) B(\tau) B^*(\tau) \Phi^*(t_1, \tau) \ d\tau = \int_{t_0}^{t_1} e^{-t_0} e^{-t_0} d\tau$$

Analogously, Controllability Grammian:

$$W_{c} = \int_{0}^{t_{1}-t_{0}} e^{-At} BB^{*}e^{-A^{*}t} dt$$

Cayley Hamilton and the expression for the matrix exponential let us derive the so-called controllability matrix:

$$\mathscr{C} = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix} \in \mathbb{C}^{n \times nm}$$

Controllability matrix

 $\mathscr{C} = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix} \in \mathbb{C}^{n \times nm}$

Proposition. The following equality holds: $\operatorname{Im}(W_r) = \operatorname{Im}(\mathscr{C})$

Observability matrix

Proposition. The following equality holds:

$\operatorname{Ker}(W_{o}) = \operatorname{Ker}(\mathcal{O})$

Controllability & Observability Tests

We can derive ``tests'' based on \mathscr{C} and \mathscr{O} in order to check observability and controllability properties of the LTI system (A, B, C). We will start with controllability test.

Theorem. Let $\Delta = t_1 - t_0$ for some $t_1 > t_0$. The following are equivalent:

(1) (A,B) controllable on $[0,\Delta] \iff \operatorname{rank}([B A B \cdots A^{n-1}B]) = n$

(2): Controllability test

(3): PBH test for controllability (Popov-Belevitch-Hautus)

- (2)
- $\Leftrightarrow \operatorname{rank}([sI A B]) = n \quad \forall s \in \mathbb{C}$ (3)

Proof Sketch

Proof Sketch

Controllability: Example

Observability Tests

Theorem. Let $\Delta = t_1 - t_0$ for some $t_1 > t_0$. The following are equivalent:

Analogous to the proof by contradiction that the PBH test for controllability implies the rank test for controllability, we can prove (3) \implies (2) by way of constructing the so called observable decomposition:

There exists a transformation of coordinates to the form

$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = n$$
(2)
$$\begin{bmatrix} sI - A \\ C \end{bmatrix} = n, \quad \forall \ s \in \mathbb{C}$$
(3)

$$\dot{z} = \begin{bmatrix} \tilde{A}_{11} & 0 \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix} z + \begin{bmatrix} \tilde{B}_1 \\ \tilde{B}_2 \end{bmatrix} u$$
$$y = \begin{bmatrix} \tilde{C} & 0 \end{bmatrix} z$$

Lyapunov Tests for Controllability/Observability

We saw in the previous recorded lectures in this module that $t_1 \mapsto W_r$ is the solution to $\dot{X}(t) = A(t)X(t) + X(t)A^*(t) + B(t)B^*(t)$, with $X(t_0) = 0$ $t_0 \mapsto W_0$ is the solution to $\dot{X}(t) = -A(t)X(t) - X(t)A^*(t) - C(t)^*C(t)$, with $X(t_1) = 0$ and

For LTI this gives rise to the Lypunov tests for controllability and observability. **Proposition.** Assume A is Hurwitz stable. The LTI system (A, B) is controllable if and only if there exists a unique positive definite solution W to the following Lyapunov equation

$$AW + WA^{\top}$$

Moreover, the solution is

$$W = \int_0^\infty e^{A\tau} B B$$

There is an analogous result for observability: $AW + WA^{\top} = -C^{\top}C$

Why useful? Synthesis of feedback controllers that stabilize the system.

 $= -BB^{\top}$

 $B^{\mathsf{T}} e^{A^{\mathsf{T}} \tau} d\tau$

Feedback Stabilization

Proposition. Let $\chi_A(s) = \det(sI - A)$ denote the characteristic polynomial of A. Fro any monoic real polynomial π of degree n, there exists a matrix $F \in \mathbb{R}^{m \times n}$ such that $\chi_{A+BF} = \pi$ if and only if the pair (A, B) is controllable.

two methods:

- Lyapunov
- Controllable cannonical form

Feedback Stabilization based on Lyapunov

fact: (A, B) is controllable $\implies (-\mu I - A, B)$ is controllable for every $\mu \in \mathbb{R}$.

Goal: derive an expression for a feedback controller that stabilizes the system

Controllable Cannonical Form

Why is this useful? The benefit of having the system in this form is that its easy to assess stability and its easy to design a feedback controller to place the poles for example to stabilize the system.

For example, the characteristic polynomial is given by and with feedback u = -Kx, $K = \begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix} \in \mathbb{R}^{1 \times n}$, we have the closed loop system given by

Any completely controllable system can be transformed to the controllable cannonical form: $\begin{cases} x = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & -a_{n-3} & \cdots & -a_1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$

y
$$\chi_A(s) = s^n + \alpha_1 s^{n-1} + \alpha_2 s^{n-2} + \dots + \alpha_{n-1} s + \alpha_n$$

Example: Pole Placement