Mod3-RL3: Observability of LTV Systems

References:

- Chapter 8.2-8.4 Callier & Desoer [C&D]
- Chapter 11 and 15 Hespanha [JH]

[510] Lecture Notes (Finite Rank Operator Lemma, Hilbert Spaces, Adjoints, etc.)

Observability Map

Consider the LTV system

- $\dot{x}(t) = A(t)x(t)$ y(t) = C(t)x(t)
- $y(t) = \rho(t, t_0, x_0, u_{[t_0, t_1]}) = C(t)\Phi$ Solution is
- The observability map $\mathscr{L}_o: \mathbb{R}^n \to \mathscr{Y}_{[t_0,t_1]}$ is defined by
 - $\mathscr{L}_{o}x_{0} = C(\cdot)\Phi(\cdot,t_{0})x_{0}$

That is, $\mathscr{L}_{o}x_{0}$ is an operator in $PC([t_{0}, t_{1}])$ such that

$$(\mathscr{L}_o x_0)(t) = y(t) -$$

$$(t) + B(t)u(t)$$
(t)

$$P(t, t_0)x_0 + \int_{t_0}^t C(t)\Phi(t, \tau)B(\tau)u(\tau) d\tau$$

 $-\int_{t_0}^{t} C(t)\Phi(t,\tau)B(\tau)u(\tau) d\tau$

Observability

Definition. The state x_0 is unobservable on $[t_0, t_1]$ if and only if its zero input response is zero on $[t_0, t_1]$. i.e.,

Theorem. Let $(A(\cdot), B(\cdot))$ be piecewise continuous. Then, we have the following equivalences: 1 1 $(A(\cdot), B(\cdot))$ observable on $[t_0, t_1] \in$

where

$$W_{0,[t_0,t_1]} = \int_{t_0}^{t_1} \Phi(\tau, t_0) * C(\tau) * C(\tau) \Phi(\tau, t_0)$$

 x_0 is unobservable on $[t_0, t_1] \iff x_0 \in \text{Ker}(\mathscr{L}_o)$

$$\Leftrightarrow \operatorname{Ker}(\mathscr{L}_{o}) = \{0\}$$

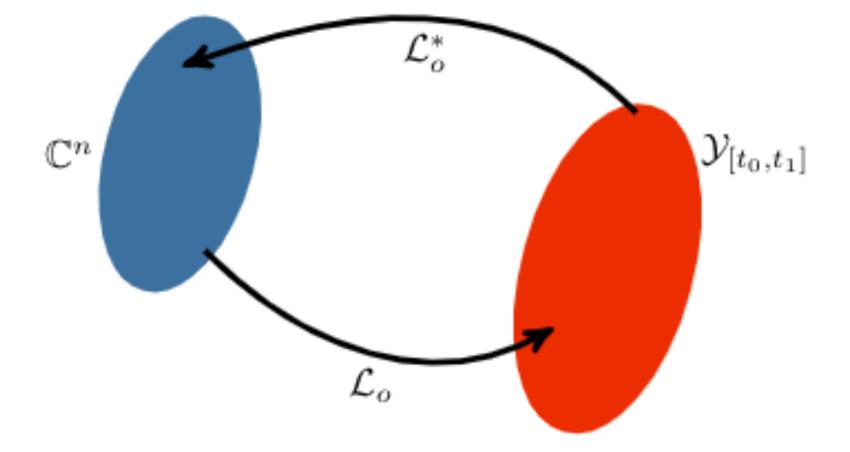
$$\Leftrightarrow \operatorname{Ker}(\mathscr{L}_{o}^{*}\mathscr{L}_{o}) = \{0\}$$

$$\Leftrightarrow \operatorname{det}(W_{o,[t_{0},t_{1}]}) \neq 0$$

$$(1)$$

$$(2)$$

$$(3)$$



d au

Recovering Initial State

Example Unobservable System

Unobservable Subspace