
Mod3-RL2: Controllability of LTV Systems

References:  
• Chapter 8.2-8.4 Callier & Desoer [C&D] 
• Chapter 11 and 15 Hespanha [JH] 
• [510] Lecture Notes (Finite Rank Operator Lemma, Hilbert Spaces, Adjoints, etc.)



LTV System and Solution Reminder

·x(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)

x(t) = ϕ(t, t0, x0, u[t0,t1]) = Φ(t, t0)x0 + ∫
t

t0

Φ(t, τ)B(τ)u(τ) dτ

Consider the LTV system

Solution is



Reminder [510]: Finite Rank Operator (FRO) Lemma
Lemma. Consider the linear map �  from � -dimensional Hilbert space �  to � -dimensional 
Hilbert space �  (either �  or � ). The following decompositions hold:

A : H → Fm m H m
Fm ℝm ℂm

Fm = Im(A) ⊕ Ker(A*)
⊥

H = Im(A*) ⊕ Ker(A)
⊥

Moreover, we have that

(a) (b)

Ker(AA*) = Ker(A*), Im(AA*) = Im(A)
Ker(A*A) = Ker(A), Im(A*A) = Im(A*)

AA* : Fm → Fm A*A : H → H



Controllability and Reachability of LTVs
·x(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t)

short-hand: we will refer to controllability (reachability) of the 
pair �(A( ⋅ ), B( ⋅ ))

Definition. Consider the pair � .  
• The state �  is controllable to zero on �  if and only if there exists �  that steers �  to � . 
• The state �  is rechable (from the origin) on �  if and only if there exists �  that steers �  to 

� .

(A( ⋅ ), B( ⋅ ))
x0 [t0, t1] u[t0,t1] (x0, t0) (0,t1)
x1 [t0, t1] u[t0,t1] (0,t0)

(x1, t1)

x0

x(t1) = 0

x(t0) = 0

x1

∃ u[t0,t1] : ∃ u[t0,t1] :
reachable

controllable



Rechability Map
To define the reachability map, we consider the expression for � :x(t1)



Rechability Map
To define the reachability map, we consider the expression for � :x(t1)

x1 := x(t1) = ϕ(t1, t0, x0, u[t0,t1]) = Φ(t1, t0)x0 + ∫
t1

t0

Φ(t1, τ)B(τ)u(τ) dτ

= Φ(t1, t0)x0 + ℒru

Hence, �  is defined byℒr : PC([t0, t1]) → ℂn

ℒr,[t0,t1](u( ⋅ )) = ∫
t1

t0

Φ(t1, τ)B(τ)u(τ) dτ

The expression for �  shows that there will be an input �  that transfers an arbitrary �  to an 
arbitrary �  if and only if the map �  is surjective (onto).

x1 u[t0,t1] (x0, t0)
(x1, t1) ℒr,[t0,t1] : PC([t0, t1]) → ℂn

Proposition. The following equivalence holds:

(A( ⋅ ), B( ⋅ )) is controllable on [t0, t1] ⟺ ℒr,[t0,t1](u( ⋅ )) is surjective



Reachable subspace
The map �  determines the set of states that can be reached from the origin on 
some time interval.

ℒr : PC([t0, t1]) → ℂn



Adjoint of the Reachability Map
To understand controllability in terms of reachability we construct what is known as the reachability Grammian. 
To this end we need to first compute the adjoint of � . ℒr : 𝒰[t0,t1] → ℝn

ℒ*r x : B*( ⋅ )Φ*(t1, ⋅ )x

ℒr(u( ⋅ )) = ∫
t1

t0

Φ(t1, τ)B(τ)u(τ) dτ

Claim. The adjoint is

proof.



Reachability Grammian
With the adjoint map in hand, we can define the reachability grammian �  as follows:ℒrℒ*r : ℝn → ℝn



Controllability in terms of reachability
With the adjoint map in hand, we can define the reachability grammian �  as follows:ℒrℒ*r : ℝn → ℝn

(A( ⋅ ), B( ⋅ )) controllable on [t0, t1] ⟺ Im(ℒr) = ℂn

⟺ Im(ℒrℒ*r ) = ℂn

⟺ det(Wr,[t0,t1]) ≠ 0

ℒrℒ*r = ∫
t1

t0

Φ(t1, τ)B(τ)B*(τ)Φ*(t1, τ) dτ

Theorem. Let �  be piecewise continuous. Then, we have the following equivalences:(A( ⋅ ), B( ⋅ ))

Further, the set of reachable states on �  is the subspace � , where we drop the 
interval subscript when clear from context.

[t0, t1] Im(ℒr) = Im(Wr)

(1)
(2)
(3)



Controllability in terms of reachability

(A( ⋅ ), B( ⋅ )) controllable on [t0, t1] ⟺ Im(ℒr) = ℂn

⟺ Im(ℒrℒ*r ) = ℂn

⟺ det(Wr,[t0,t1]) ≠ 0

Theorem. Let �  be piecewise continuous. Then, we have the following equivalences:(A( ⋅ ), B( ⋅ ))

(1)
(2)
(3)

proof sketch.



Controllability Map
The equivalence in the preceding theorem let’s us derive the analog to the rechability map: controllability map

ℒc : u[t0,t1] ↦ ∫
t1

t0

Φ(t0, τ)B(τ)u(τ) dτ



Controllability Map: Connection to Reachability Map
Proposition. The following equivalence holds:

ℒc is surjective ⟺ ∃ u[t0,t1] that steers arbitrary (x0, t0) to arbitrary (x1, t1) .

Proposition. The reacbility map is related to the controllability map:

Im(ℒr) = Φ(t1, t0)Im(ℒc)



Controllability Subspace and Grammian
With the adjoint map in hand, we can define the controllability grammian �  as follows:ℒcℒ*c : ℝn → ℝn

(A( ⋅ ), B( ⋅ )) controllable on [t0, t1] ⟺ Im(ℒc) = ℂn

⟺ Im(ℒcℒ*c ) = ℂn

⟺ det(Wc,[t0,t1]) ≠ 0

ℒcℒ*c = ∫
t1

t0

Φ(t0, τ)B(τ)B*(τ)Φ*(t0, τ) dτ

Theorem. Let �  be piecewise continuous. Then, we have the following equivalences:(A( ⋅ ), B( ⋅ ))

Further, the controllable subspace is the subspace

(1)
(2)
(3)

Im(ℒc) = Im(Wc) = {x0 ∈ ℂn : ∃u( ⋅ ), 0 = Φ(t1, t0)x0 + ∫
t1

t0

Φ(t1, τ)B(τ)u(τ) dτ}



Mod3-RL2a: Application to Minimum Cost Control

References:  
• Chapter 8.2-8.4 Callier & Desoer [C&D] 
• Chapter 11 and 15 Hespanha [JH] 
• [510] Lecture Notes (Finite Rank Operator Lemma, Hilbert Spaces, Adjoints, etc.)



Minimum Cost Control
One interesting application for the controllability/reachabiliy map and grammian is to the problem of finding the 
minimum cost control. Consider the cost of control to be givn by teh � -norm of �L2 u( ⋅ ) :



Minimum Cost Control ũ(t) = B(t)*Φ(t1, t)*W−1
r,[t0,t1](x1 − Φ(t1, t0)x0)



Minimum Cost Control: Effectiveness of the Actuators








