
Mod2-RL3: Stability via Lyapunov’s Equation

References:  
• Chapter 4 and 7 Callier & Desoer [C&D] 
• Chapter 8 and 9 Hespanha [JH] 
• [510] Lecture Notes



Lyapunov Functions

The existance of a Lyapunov function is one way to prove stability. It essentially provides us with a  certificate.

Definition: For a dynamical system �  with �  as an equilibrium point, a scalar function 
�  is a Lyapunov function if it is � , locally positive definite, and �  where 

·x = f(x) x* = 0
V : ℝn → ℝ C1 ·V ≤ 0

·V(x) =
d
dt

V(x(t)) =
∂V
∂x

d
dt

x = DxV(x)f(x)

Definition: A function �  is said to be positive definite if � , all sublevel sets are bounded, and V(x) V(z) ≥ 0

V(x) = 0 ⟺ x = 0

An � -sublevel set is defined by � . Sublevel sets benig bounded means that �  
as � .

α {x ∈ ℝn | V(x) ≤ α} V(x) → ∞
x → ∞

The existance of a Lyapunov function enables us to certify that all trajectories of the system reamin bounded, 
and hence the system is stable.



Lyapunov Functions: Asymptotic Stability

Consider the dynamical system �  with �  as an equilibrium point. Suppose there is a scalar 
function �  that is � , locally positive definite, and �  for all �  and � .

·x = f(x) x* = 0
V : ℝn → ℝ C1 ·V < 0 x ≠ 0 ·V(0) = 0

Then every trajectory of �  converges to zero as �  meaning that the system is globally 
asymptotically stable.

·x = f(x) t → ∞

Interpretation: 
• the function �  is a positive definite generalized energy function 
• and energy is always dissipated, except at zero

V



Lyapunov Functions: Example
Consider the dynamical system where �  and � .|g(z) | ≤ |z | /2 |h(z) | ≤ |z | /2

Show that �  is a Lyapunov function.V(z) =
1
2

∥x∥2
2

·x1 = − x1 + g(x2)
·x2 = − x2 + h(x1)

Proof: 
• Clearly �  is positive definite 
• Next we bound �

V
·V



Lyapunov Functions for LTI Systems
For linear systems, the case is much easier since it turns out that �  is always a Lyapunov function if 
one exists. That is the form of the Lyapunov function for stable linear system is this quadratic form.

V(x) = x⊤Px

For the linear system � , if it is stable then we will be able to construct a �  such that �  
satisfies the requirements for a Lyapunov function. That is, it is positive definite and decreasing along trajectories. 

·x = Ax P = P⊤ ⪰ 0 V(x) = x⊤Px



Lyapunov Functions for LTI Systems



Lyapunov Theorem for CT LTI Systems

Theorem: The following conditions are equivalent.

a. The system �  is asymptotically (equiv. exponentially) stable. 
b. All eigenvalues of �  have strictly negative real parts. 
c. For every � , there exists a unique �  to the Lyapunov equation � . 

Moreover, �  is given by  

·x = Ax
A

Q = Q⊤ ≻ 0 P = P⊤ ≻ 0 A⊤P + PA = − Q
P

P = ∫
∞

0
eA⊤tQeAt dt

d. There exists a �  for which the following Lyapunov matrix inequality holds: P = P⊤ ≻ 0

A⊤P + PA < 0
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Proof Sketch for �b ⟹ c



Proof Sketch for d �  b⟹

Let �  such that �  and define �P = P⊤ ≻ 0 A⊤P + PA < 0 Q = − (A⊤P + PA)

For an arbitrary solution �  of the LTI system define the scalar time dependent map �x(t) v(t) = x⊤(t)Px(t) ≥ 0



Proof Sketch for d �  b: Comparison Lemma⟹

Lemma: (Comparison Lemma) Let �  be a differentiable scalar function. For some � , we have the following 
implication:

v(t) μ ∈ ℝ

·v ≤ μv(t), ∀ t ≥ t0 ⟹ v(t) ≤ eμ(t−t0)v(t0), ∀ t ≥ t0

Applying the Lemma we have



Lyapunov Theorem for DT LTI Systems

Theorem: The following conditions are equivalent.

a. The system �  is asymptotically (equiv. exponentially) stable. 
b. All eigenvalues of �  have modulus less than one. 
c. For every � , there exists a unique �  to the Stein equation � . 

x+ = Ax
A

Q = Q⊤ ≻ 0 P = P⊤ ≻ 0 A⊤PA − P = − Q

d. There exists a �  for which the following Lyapunov matrix inequality holds: P = P⊤ ≻ 0

A⊤PA − P < 0



Using the Lyapunov Equation to Assess Performance

We can use the Lyapunov equation to assess state feedback.

·x = Ax + Bu
y = Cx

Suppose that the closed loop dynamics are stable. Then to evaluate natural quadratic integral 
performance measures we can use the Lyapunov equation.

Ju = ∫
∞

0
u(t)⊤u(t) dt

energy of input

, Jy = ∫
∞

0
y(t)⊤y(t) dt

energy of output
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