Mod2-RL2: Spectral Conditions for Stabiliy

References:

- Chapter 4 & 7Callier & Desoer [C&D]
- Chapter 8 & Chapter 9 Hespanha [JH]
- Review [510] Lectures Notes on norms

LTI Systems

- \bullet

$$\exp(tA) = \sum_{k=1}^{p} \sum_{\ell=0}^{m_k-1} t^{\ell} \exp(\lambda_k t) p_{k\ell}(A)$$

$\dot{x} = Ax$

Stability of LTI systems (both CT and DT) reduces to checking the spectral properties of the system matrix A Intuition: From [510], we know how to compute functions of matrices. In particular, we know that

where $p_{k,\ell}$ is a polynomial derived from the minimal polynomial, and m_k is the ascent of $A - \lambda_k I$.

Spectral Conditions for Stability

Proposition CT: $\dot{x} = Ax$ is exponentially stable $\iff \sigma(A) \subset \mathbb{C}_{-}^{\circ}$

$$\exp(tA) = \sum_{k=1}^{p} \sum_{\ell=0}^{m_k-1} t^{\ell} \exp(\lambda_k t) p_{k\ell}(A)$$

Spectral Conditions for Stability

Proposition DT: $x^+ = Ax$ is exponentially stable $\iff \sigma(A) \subset \mathbb{D}_1$

$$\forall \nu \in \mathbb{N}, A^{\nu} = \sum_{k=1}^{p} \sum_{\ell=1}^{m_{k}-1} \nu(\nu-1)\cdots(\nu-\ell+1)\lambda_{k}^{\nu-\ell} p_{k\ell}(A)$$

Applications

Two applications to better understand spectral stability properties:

- 1. M2-RL2a: Numerical Integration: Choosing stepsize to ensure convergence/stability
- 2. M2-RL2b: Nonlinear system stability through linearization and Hartman Grobman

M2-RL2a: Numerical Integration

Consider $\dot{x} = As$, $x(0) = x_0$, $A \in \mathbb{C}^{n \times n}$, $x \in \mathbb{C}^n$

Call $t \mapsto x(t) = \exp(At)x_0$ the exact solution such that $t \mapsto x(t)$ is analytic in t. Let ξ_0, ξ_1, \ldots be the computed values at different times.

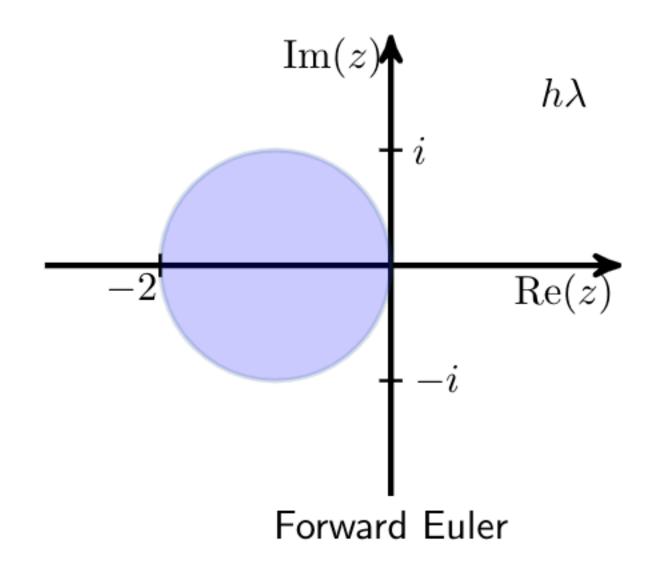
First Order Integration Schemes:

- Forward Euler
- Backward Euler

Forward Euler

Forward Euler: Example

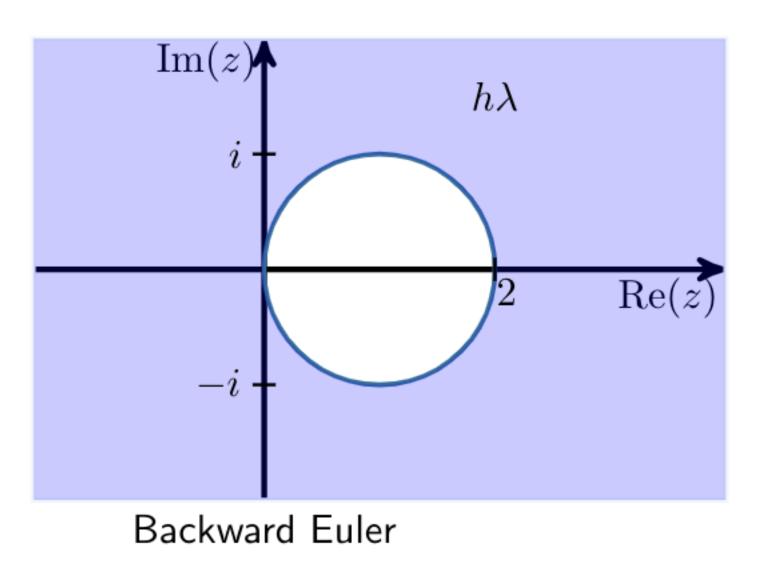
Forward Euler: Example



Forward Euler: Convergence Criteria

Backward Euler

Backward Euler: Example



Backward Euler: Convergence Criteria

Summary

- \bullet
- \bullet the spectrum of the dynamics

Convergence of numerical schemes for discretization go hand in hand with stability of LTI systems Picking a stepsize such that the numerical scheme converges to the exact solution requires assessing

M2-RL2b: Stability of Nonlinear Systems via Linearization

- We saw in M2-RL1 that we can linearize a nonlinear system around an equilibrium point and assess stability of that nonlinear system in a neighborhood of the equilibrium via the linearized system.
- Take-Away: Linearization is effective in predicting qualitative patterns of behavior.
- lacksquarenotes discuss this and we will come back to this concept for LTI systems in the next lecture)

Theorem: [Hartman Grobman] Consider a nonlinear dynamical system $\dot{x} = f(x)$ with an equilibrium point x^* (i.e. $f(x^*) = 0$). If the linearization of the system $A := D_x f(x)|_{x=x^*}$ has no zero or purely imaginary eigenvalues then there exissts a homeomorphism (i.e., a conitnuous map with a continuous inverse) from a neighborhood U of x^* into \mathbb{R}^n ,

particular, $h(x^*) = 0$.

The alternative is to construct a Lyapunov function, but this can be difficult for nonlinear systems (the

 $h: U \to \mathbb{R}^n$

taking trajectories of the nonlinear system $\dot{x} = f(x)$ and mapping them onto those of $\dot{\tilde{x}} = A\tilde{x}$. In

Easier way to understand HG

linearization

$$\dot{x} = f(x) \longrightarrow \dot{\tilde{x}}$$

Corollary: Suppose that $f \in C^2(\mathbb{R}^n, \mathbb{R})$. If the linearized system is exponentially stable, then there exists a ball $B \subset \mathbb{R}^n$ around x^* and constants $c, \lambda > 0$ such that for every solution x(t) to the nonlinear system that starts at $x(t_0) \in B$, we have

$$||x(t) - x^*)|| \le c e^{\lambda(t - t_0)} ||x(t_0) - x^*||$$

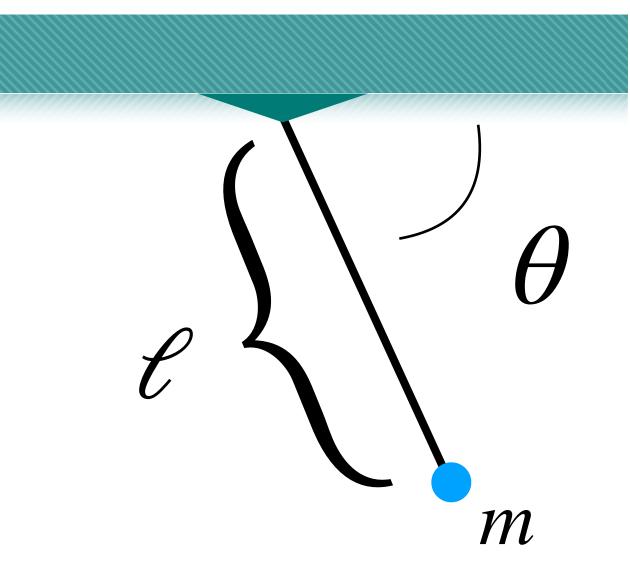
- Instability is also preserved
- Marginal stability is not consider $\dot{x} = x^3$ and $\dot{x} = -x^3$

$\tilde{x} = A\tilde{x}, A := D_x f(x^*)$

Inverted Pendulum

 $m\ell^2\ddot{\theta} = mg\ell\sin(\theta) - b\dot{\theta} + u$

State-Space Model



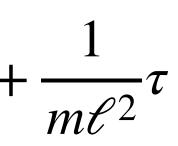
friction: b gravity: g

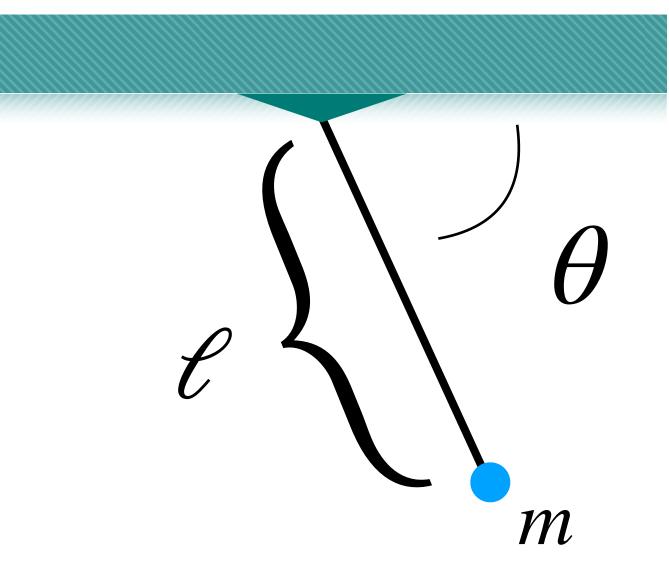
Inverted Pendulum: Linearized Dynamics

State-Space Model
$$\dot{x}_1 = \dot{\theta} = x_2$$

 $\dot{x}_2 = \ddot{\theta} = \frac{g}{\ell} \sin(x_1) - \frac{b}{m\ell^2} x_2$

Linearization and Equilibrium:





friction: b gravity: g

Inverted Pendulum: Stability