
Mod2-RL2: Spectral Conditions for Stabiliy
References:  
• Chapter 4 & 7Callier & Desoer [C&D] 
• Chapter 8 & Chapter 9 Hespanha [JH] 
• Review [510] Lectures Notes on norms



·x = Ax

LTI Systems

• Stability of LTI systems (both CT and DT) reduces to checking the spectral properties of the system matrix �  
• Intuition: From [510], we know how to compute functions of matrices. In particular, we know that
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tℓ exp(λkt)pkℓ(A)

where �  is a polynomial derived from the minimal polynomial, and �  is the ascent of � .pk,ℓ mk A − λkI



Spectral Conditions for Stability

Proposition CT: ·x = Ax is exponentially stable ⟺ σ(A) ⊂ ℂ∘
−
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Spectral Conditions for Stability

Proposition DT: x+ = Ax is exponentially stable ⟺ σ(A) ⊂ 𝔻1

∀ ν ∈ ℕ, Aν =
p

∑
k=1

mk−1

∑
ℓ=1

ν(ν − 1)⋯(ν − ℓ + 1)λν−ℓ
k pkℓ(A



Applications

Two applications to better understand spectral stability properties: 
1. M2-RL2a: Numerical Integration: Choosing stepsize to ensure convergence/stability 
2. M2-RL2b: Nonlinear system stability through linearization and Hartman Grobman



M2-RL2a: Numerical Integration

Consider �·x = As, x(0) = x0, A ∈ ℂn×n, x ∈ ℂn

Call �  the exact solution such that �  is analytic in �.  
Let �  be the computed values at different times.

t ↦ x(t) = exp(At)x0 t ↦ x(t) t
ξ0, ξ1, …

First Order Integration Schemes: 
• Forward Euler 
• Backward Euler



Forward Euler



Forward Euler: Example



Forward Euler: Example



Forward Euler: Convergence Criteria



Backward Euler



Backward Euler: Example



Backward Euler: Convergence Criteria



Summary

• Convergence of numerical schemes for discretization go hand in hand with stability of LTI systems 
• Picking a stepsize such that the numerical scheme converges to the exact solution requires assessing 

the spectrum of the dynamics



M2-RL2b: Stability of Nonlinear Systems via Linearization

• We saw in M2-RL1 that we can linearize a nonlinear system around an equilibrium point and assess 
stability of that nonlinear system in a neighborhood of the equilibrium via the linearized system. 

• Take-Away: Linearization is effective in predicting qualitative patterns of behavior. 
• The alternative is to construct a Lyapunov function, but this can be difficult for nonlinear systems (the 

notes discuss this and we will come back to this concept for LTI systems in the next lecture)

Theorem: [Hartman Grobman] Consider a nonlinear dynamical system �  with an equilibrium 
point �  (i.e. � ). If the linearization of the system �  has no zero or purely 
imaginary eigenvalues then there exissts a homeomorphism (i.e., a conitnuous map with a continuous 
inverse) from a neighborhood �  of �  into � ,  

taking trajectories of the nonlinear system �  and mapping them onto those of � . In 
particular, �

·x = f(x)
x* f(x*) = 0 A := Dx f(x) |x=x*

U x* ℝn

·x = f(x) ·̃x = Ax̃
h(x*) = 0.

h : U → ℝn



Easier way to understand HG

Corollary: Suppose that � . If the linearized system is exponentially stable, then there exists a 
ball �  around �  and constants �  such that for every solution �  to the nonlinear system that 
starts at � , we have

f ∈ C2(ℝn, ℝ)
B ⊂ ℝn x* c, λ > 0 x(t)

x(t0) ∈ B

·x = f(x) ⟶ ·̃x = Ax̃, A := Dx f(x*)

linearization

∥x(t) − x*)∥ ≤ ceλ(t−t0)∥x(t0) − x*∥

• Instability is also preserved 
• Marginal stability is not — consider �  and �·x = x3 ·x = − x3



Inverted Pendulum

m

θ

}

ℓ

friction: � 
gravity: �

b
g

mℓ2··θ = mgℓ sin(θ) − b ·θ + u

State-Space Model



Inverted Pendulum: Linearized Dynamics
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Linearization and Equilibrium:



Inverted Pendulum: Stability




































