Mod1-RL2: Solutions to LTV Systems & Fundamental Theorem of ODEs

References:

- Chapter 3 Callier & Desoer [C&D]
- Chapter 5 (LTV), Chapter 6 (LTI) Hespanha [JH]

Linear Time Varying (LTV) Autonomous DE $\dot{x} = f(x, t)$

Let $\mathcal{D} \subseteq \mathbb{R}_+$ be a set which contains at most a finite number of points per unit interval. The function $f : \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}^n$ satisfies two assumptions:

limits exists.

$$\lim_{\tau \to \tau_-} f(x, \tau) := f(x, \tau_-) \in \mathbb{R}^n$$

 $g: \mathbb{R}_+ \to \mathbb{R}_+$ such that

 $\|f(\xi,t) - f(\xi',t)\| \le g(t)\|\xi - \xi'\| \quad \forall t \in \mathbb{R}_+ \ \forall \xi, \xi' \in \mathbb{R}^n$

(A1) For each $x \in \mathbb{R}^n$, the map $t \in \mathbb{R}_+ \setminus \mathcal{D} \mapsto f(x, t) \in \mathbb{R}^n$ is continuous and for any $\tau \in \mathcal{D}$, the following

and
$$\lim_{\tau \to \tau_+} f(x, \tau) := f(x, \tau_+) \in \mathbb{R}^n$$

(A2) For any $t \in \mathbb{R}_+$, the function $f(\cdot, t)$ is Lipschitz continuous – i.e., \exists a piecewise continuous function

Linear Time Varying (LTV) Autonomous DE

Fundamental Theorem of ODEs (FTO): Existence and Uniqueness

 $\dot{x} = f(x, t)$

Applying FTO to LTV Systems

Existence of the State Transition Map (Flow)

Zero State and Zero Input Maps

Recall [510]: Matrix Representation Theorem: Any linear transformation $\mathcal{T}: U \to V$ on vector spaces can be represented as a matrix

State Transition Matrix

State Transition Matrix: Example LTI Systems