
AA/EE547: Wi 22

Lecture 0: Review of Matrix Exponential [510]
Lecturer: L.J. Ratliff

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications,
meaning you should take your own notes in class and review the provided references as opposed to taking
these notes as your sole resource. I provide the lecture notes to you as a courtesy; it is not required that I
do this. They may be distributed outside this class only with the permission of the Instructor.

Throughout the quarter we will use the following keys for references to books:

• [Ax]: Axler, Linear Algebra Done Right

• [C&D]: Callier and Desoer, Linear Systems Theory

• [He]: Hespanha, Linear Systems Theory

References: Solutions to ODEs: Chapter 3 [C&D]; Jordan Form: Chapter 4 [C&D]; Chapter 8.D [Ax]

1 The Matrix Exponential

First, we note that the matrix exponential has several important properties.

• e0 = I

• eA(t+s) = eAteAs

• e(A+B)t = eAteBt ⇐⇒ AB = BA

• (eAt)−1 = e−At

• d
dte

At = AeAt = eAt ·A
• Let z(t) ∈ Rn×n. Then the solution to

ż(t) = Az(t)

with z(0) = I is
z(t) = eAt

Recall that

exp(x) =

∞∑
k=0

xk

k!

This is also true for the matrix exponential—i.e.

exp(At) =

∞∑
k=0

(At)k

k!

Fact. Note also that Cayley-Hamilton implies that the matrix exponential is expressible as a polynomial
of order n− 1!

Using the series representation of eAt to compute eAt is difficult unless, e.g., the matrix A is nilpotent in
which case the series yields a closed form solution.

Definition. (Nilpotent) A nilpotent matrix is such that Ak = 0 for some k.
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Example. Consider

A =

[
0 1
0 0

]
Then

A2 =

[
0 0
0 0

]
so that

eAt = I +At =

[
1 t
0 1

]
Hence we need an alternative method to compute it.

1.1 Review of Laplace

Definition. (Laplace Transform)

Lf(t) =
∫ ∞

0

f(t)e−st dt

The Laplace transform has the following properties:

• Linearity:
L(af(t) + bg(t)) = aF (s)︸︷︷︸

Lf(t)

+bG(s)︸︷︷︸
Lg(t)

• Time Delay: Let u be a step function.

a0 t

u(t− a)

f(t− a)u(t− a) L−→ e−asF (s)

• First derivative (technically should be t = 0−):

Lḟ(t) = sF (s)− f(0)

• Integration:

L
(∫ ∞

0−
f(τ) dτ

)
=
F (s)

s

1.2 Computation of eAt via Laplace

Use the Laplace transform of Ẋ = AX, X ∈ Rn×n, X(0) = I:

sX̂(s)−X(0) = AX̂(s)

so that
sX̂(s)−AX̂(s) = I =⇒ X̂(s) = (sI −A)−1
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We know (from property 6) that X(t) = eAt so that

eAt = X(t) = L−1(X̂(s)) = L−1
(
(sI −A)−1

)
Example. Consider the same example above with

A =

[
0 1
0 0

]
so that

(sI −A) =
[
s −1
0 s

]
Recall that the inverse of a 2× 2 matrix

A =

[
a b
c d

]
is

A−1 =
1

ad− bc

[
d −b
−c a

]
.

Now,

(sI −A)−1 =
1

s2

[
s 1
0 s

]
=

[
1
s

1
s2

0 1
s

]
where we recall that L(f(t)) = F (s)

s so that L(1) = 1
s ; it is also easy to show that the ramp function

transforms to 1
s2 . Hence,

eAt = L−1

[
1
s

1
s2

0 1
s

]
=

[
1 t
0 1

]
Example. Consider

A =

[
1 1
0 1

]
Then

(sI −A)−1 =

[
s− 1 −1
0 s− 1

]−1

=
1

(s− 1)2

[
s− 1 1
0 s− 1

]
where we recall that Leat = 1

s−a , s > a which can be verified by direct integration. Hence,

eAt = L−1

[ 1
s−1

1
(s−1)2

0 1
s−1

]
=

[
et tet

0 et

]

2 Computing the Matrix Exponential

Computation of the matrix exponential is important for expressing the solution of a autonomous or controlled
linear time invariant dynamical system. So we need ways to compute it that are tractable.

3 Distinct Eigenvalues

If matrix A ∈ Rn×n (or ∈ Cn×n) has m distinct eigenvalues (λi ̸= λj , i ̸= j) then it has (at least) m
linearly independent eigenvectors.

If all eigenvalues of A are distinct then A is diagonalizable.

Q: do you remember what diagonalizable means?



Lecture 0: Review of Matrix Exponential [510] 4

Diagonalizable. An n× n matrix A is diagonalizable iff the sum of the dimensions of its eigenspaces is
n—aka there exists a matrix P such that

A = PΛP−1

where Λ = diag(λ1, . . . , λn),
P =

[
v1 · · · vn

]
with

Avi = λivi

(i.e. col vectors of P are right eigenvectors of A)

Proof. Proof of Prop. 3 (By contradiction) Assume λi, i ∈ {1, . . . ,m} are distinct and vi, i = 1, . . . ,m are
linearly dependent. That is, there exists αi such that

m∑
i=1

αivi = 0

where all αi are not zero. We can assume w.l.o.g that α1 ̸= 0. Multiplying on the left by (λmI −A),

0 = (λmI −A)
m∑
i=1

αivi = (λmI −A)
m−1∑
i=1

αivi + αm(λmI −A)vm =

m−1∑
i=1

αi(λm − λi)vi

since Avi = λivi. Then multiply by (λm−1I −A) to get that

0 = (λm−1I −A)
m−1∑
i=1

αi(λm − λi)vi =
m−2∑
i=1

αi(λm−1 − λi)(λm − λi)vi = 0

Repeatedly multiply by (λm−kI −A), k = 2, . . . ,m− 2 to obtain

α

m∏
i=2

(λi − λ1)vi = 0

As λ1 ̸= λi, i = 2, . . . ,m, the above implies that α1 = 0 which is a contradiction.

For each n× n complex matrix A, define the exponential of A to be the matrix

exp(A) =

∞∑
k=0

Ak

k!

It is not difficult to show that this sum converges for all complex matrices A of any finite dimension. But
we will not prove this here.

If A is a 1 × 1 matrix [t], then eA = [et], by the Maclaurin series formula for the function y = et. More
generally, if D is a diagonal matrix having diagonal entries d1, d2, . . . , dn, then we have

eD = I +D +
1

2!
D2 + · · · =

1 · · · 0
...

. . .
...

0 · · · 1

+ diag(d1, . . . , dn) + diag

(
d21
2!
,
d21
2!
, . . . ,

d21
2!

)
= diag

(
ed1 , . . . , edn

)
The situation is more complicated for matrices that are not diagonal. However, if a matrix A happens to be
diagonalizable, there is a simple algorithm for computing eA, a consequence of the following lemma.
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Let A and P be complex n× n matrices, and suppose that P is invertible. Then

exp(P−1AP ) = P−1 exp(A)P

Proof. Recall that, for all integers m ≥ 0, we have (P−1AP )m = P−1AmP . The definition for exponential
then yields

exp(P−1AP ) = I + P−1AP +
1

2!
(P−1AP )2 + · · ·

= I + P−1AP +
1

2!
P−1A2P + · · ·

= P−1

(
I +A+

A2

2!
+ · · ·

)
P

= P−1 exp(A)P

If a matrix A is diagonalizable, then there exists an invertible P so that A = PDP−1, where D is a
diagonal matrix of eigenvalues of A, and P is a matrix having eigenvectors of A as its columns. In this case,
eA = PeDP−1.

Let A denote the matrix

A =

[
5 1
−2 2

]
You can asily verify that 4 and 3 are eigenvalues of A, with corresponding eigenvectors

w1 =

[
1
−1

]
and w2 =

[
1
−2

]
It follows that

A = PDP−1 =

[
1 1
−1 2

] [
4 0
0 3

] [
2 1
−1 −1

]
so that

exp(A) =

[
1 1
−1 2

] [
e4 0
0 e3

] [
2 1
−1 −1

]
=

[
2e4 − e3 e4 − e3
2e3 − 2e4 2e3 − e4

]
The definition of the exponential as a sum immediately reveals many other familiar properties. The following
proposition is easy to prove:

Let A ∈ Cn×n.
1. If 0 denotes the zero matrix, then e0 = I.

2. AmeA = eAAm for all integers m

3. (eA)T = e(A
T )

4. If AB = BA then AeB = eBA and eAeB = eBeA.

Unfortunately not all familiar properties of the scalar exponential function y = et carry over to the matrix
exponential. For example, we know from calculus that es+t = eset when s and t are numbers. However this
is often not true for exponentials of matrices. In other words, it is possible to have n× n matrices A and B
such that eA+B ̸= eAeB . Exactly when we have equality, eA+B = eAeB , depends on specific properties of
the matrices A and B. What do you think they are?

Let A and B be complex n× n matrices. If AB = BA then eA+B = eAeB .

Proof. DIY exercise
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4 Generalized Eigenvectors

Last time we talked about the case when A had distinct eigenvalues and we said you could simply diagonalize
as A = PΛP−1 and then write

exp(At) = Pdiag(exp(λ1t), . . . , exp(λnt))P
−1

Question: What about when A is not diagonalizable?

First, some preliminaries. Consider a vector space (V, F ) and a linear map A : V → V .

Definition. (Invariant Subspaces.) A subspace M ⊂ V is said to be A–invariant or invariant under A if
given x ∈M , Ax ∈M . This is often written as A[M ] ⊂M or even AM ⊂M .

Example.

1. N (A) is A–invariant.

2. R(A) is A–invariant.
3. N (A− λiI) where λi ∈ σ(A) is A–invariant.
4. If

p(A) = Ak + α1A
k−1 + · · ·+ αk−1A+ αkI

then, N (p(A)) is A–invariant.

5. Let the subspaces M1 and M2 be A–invariant. Let

M1 +M2 = {x ∈ V : x = x1 + x2, xi ∈Mi for i = 1, 2}

Then, M1 ∩M2 and M1 +M2 are A–invariant.

Definition. (Generalized Eigenvectors) Suppose λ is an eigenvalue of the square matrix A. We say that
v is a generalised eigenvector of A with eigenvalue λ, if v is a nonzero element of the null space of
(A− λI)j—i.e. N (A− λI)j—for some positive integer j.

Fact. Null spaces eventually stabilize—that is, the null spaces N (A−λI)j are increasing with j and there
is a unique positive integer k such that N (A− λI)j = N (A− λI)k for all j ≥ k.

Definition. (Generalized Eigenspace) Consider A ∈ Fn×n with spectrum σ(A) = {λ1, . . . , λk}. Define the
generalized eigenspace pertaining to λi by

Eλi
= {x ∈ Cn| (A− λiI)nx = 0}

Intuition: Observe that all the eigenvectors pertaining to λi are in Eλi
. For a given Eλi

, we can interpret
the spaces in a hierarchical viewpoint. We know that Eλi contains all the eigenvectors pertaining to λi. Call
these eigenvectors the first order generalized eigenvectors. If the span of these is not equal to Eλi , then
there must be a vector x ∈ Eλi

for which y = (A − λiI)2x = 0 but (A − λiI)x ̸= 0. That is to say y is an
eigenvector of A pertaining to λi. Call such vectors second order generalized eigenvectors. In general, we
call an x ∈ Eλi

a generalized eigenvector of order p if y = (A − λiI)px = 0 but (A − λiI)p−1x ̸= 0. For
this reason we will call Eλi the space of generalized eigenvectors.

Fact. Let A ∈ Cn×n with spectrum σ(A) = {λ1, . . . , λk} and invariant subspaces Eλi , i ∈ {1, . . . , k}.
1. Let x ∈ Eλi

be a generalized eigenvector of order p. Then the vectors

x, (A− λiI)x, (A− λiI)2x, . . . , (A− λiI)p−1x (1)

are linearly independent.

2. The subspace of Cn generated by the above vectors is an invariant subspace of A.



Lecture 0: Review of Matrix Exponential [510] 7

Example. Consider

A =

1 1 0
0 1 2
0 0 3


•

χA(λ) = (λ− 3)(λ− 1)2

• eigenvalues: λ = 1, 3

• eigenvectors:
λ1 = 3 : v1 = (1, 2, 2)
λ2 = 1 : v2 = (1, 0, 0)

• The last generalized eigenvector will be a vector v3 ̸= 0 such that

(A− λ2I)2v3 = 0

but
(A− λ2I)v3 ̸= 0

Pick v3 = (0, 1, 0). Note that (A− λ2I)v3 = v2.

Tip. How many powers of (A−λI) do we need to compute in order to find all of the generalized eigenvectors
for λ?

If A is an n × n matrix and λ is an eigenvalue with algebraic multiplicity k, then the set of generalized
eigenvectors for λ consists of the nonzero elements of N (A− λI)k . In other words, we need to take at most
k powers of A− λI to find all of the generalized eigenvectors for λ.

Yet another example. Determine generalized eigenvectors for the matrix

A =

1 2 0
1 1 2
0 −1 1


• single eigenvalue of λ = 1

• single eigenvector v1 = (−2, 0, 1)
• now we look at

(A− I)2 =

 2 0 4
0 0 0
−1 0 −2


to get generalized eigenvector v2 = (0, 1, 0).

• Finally, (A− I)3 = 0 so that v3 = (1, 0, 0).

5 Jordan Normal Form

To get some intuition for why we can find a form that looks like the Jordan form (i.e. a block diagonal
decomposition) let us recall the following result.

First, recall the definition of the direct sum of subspaces:

Definition. (Direct Sum.) V is the direct sum of M1,M2, . . . ,Mk, denoted as

V =M1 ⊕M2 ⊕ · · · ⊕Mk
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if for all x ∈ V , ∃! xi ∈Mi, i = 1, . . . , k such that

x = x1 + x2 + · · ·+ xk

Fact. The direct sum is the generalization of linear independence; e.g., check that if V =M1 ⊕ · · · ⊕Mk,
then Mi ∩Mj = {0}.

Theorem. (Second Representation Theorem.) Let A : V → V be a linear map. Let V =M1 ⊕M2 where
dimV = n, dimM1 = k, and dimM2 = n− k be a finite dimensional vector space. If M1 is A–invariant,
then A has a representation of the form

A =

[
A11 A12

0 A22

]
where A11 ∈ F k×k, A12 ∈ F k×(n−k), A22 ∈ F (n−k)×(n−k). Moreover, if both M1 and M2 are A–invariant
then

A =

[
A11 0
0 A22

]

Proof. Let {b1, b2, . . . , bk} be a basis for M1 and let {bk+1, . . . , bn} be a basis for M2. By assumption
V =M1 ⊕M2 so that {bi}ni=1 is a basis for V and any x ∈ V has a unique representation as

x =

n∑
i=1

ξibi

Moreover, A has a matrix representation A = (aij) dictated by

Abj =

n∑
i=1

aijbi ∀ j (2)

Now for all j = 1, . . . , k, bj ∈ M1 which is A–invariant so that Abj ∈ M1 with basis {bi}ki=1. Thus by (2),
for all j ∈ {1, . . . , k}

Abj =

k∑
i=1

aijbi

i.e. Aij = 0 for all i = k + 1, . . . , n, for all j = 1, . . . , k.

Essentially what this is saying is that since M1 is A–invariant, if I apply A to a basis vector in M1 it has to
stay in M1 so any vector x ∈ M1 written as x =

∑k
i=1 ξibi is such that Ax ∈ M1 with Ax =

∑k
i=1 ηibi and

no non-zero basis vectors are coming from the basis of M2.

Why useful? We can use the second representation theorem applied to

Cn = N (A− λ1I)m1 ⊕N (A− λ2I)m2 ⊕ · · · ⊕ N (A− λpI)mp

to write A via similarity transform into a matrix that has ’nice structure’ (Jordan blocks) so that with
respect to this structure eAt is easy to compute.

We are also going to use this result quite a bit in terms of decomposition of controllable and observable
subspaces. So keep it in your pocket.
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5.1 Minimal Polynomial

In order to show this decomposition, we need to revisit the characteristic polynomial and its cousin the
minimal polynomial.

We know that
det(sI −A) = χA(s) (characteristic polynomial)

We can write
χA(s) = (s− λ1)d1(s− λ2)d2 · · · (s− λp)dp

where d1, . . . , dp are the multiplicities of λ1, . . . , λp ∈ C, respectively and

p∑
i=1

di = n

By Cayley-Hamilton, we know that
χA(A) = 0n×n

Let ψA(s) be the polynomial of least degree such that

ψA(A) = 0n×n

Definition. (Minimal Polynomial.) Given a matrix A ∈ Cn×n, we call minimal polynomial of A the
annihilating polynomial ψ of least degree. The minimal polynomial is of the form

ψA(s) = (s− λ1)m1 · · · (s− λp)mp

for some integers mi ≤ di.

Proposition. ψA(s) divides χA(s)

That is,
χA(s)

ψA(s)
= q(s)

for some polynomial q(s).

Example.

1. Consider

A1 =

λ1 0 0
0 λ1 0
0 0 λ2


Then,

χA(s) = (s− λ1)2(s− λ2) and ψA(s) = (s− λ1)(s− λ2)

2. Consider

A2 =

λ1 1 0
0 λ1 0
0 0 λ1


Then,

χA(s) = (s− λ1)3 and ψA(s) = (s− λ1)2

ψA(A) = (A− λ1I)(A− λ1I) = A2 − 2λ1A+ λ21I = 0

where

A2 =

λ21 2λ1 0
0 λ21 0
0 0 λ21
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3. Consider

A =

3 0 0
1 3 0
0 0 4


Then

χA(s) = (s− 3)2(s− 4)

The minimal polynomial is either
(s− 3)(s− 4)

or
(s− 3)2(s− 4)

It cannot be the former since (A− 3I)(A− 4I) ̸= 0.

That is, ψA(s) is the least degree polynomial such that ψA(A) = 0.

Theorem (Decomposition)

Cn = N (A− λ1I)m1 ⊕N (A− λ2I)m2 ⊕ · · · ⊕ N (A− λpI)mp

Proof.
1

ψA(s)
=

1

(s− λ1)m1 · · · (s− λp)mp
=

n1(s)

(s− λ1)m1
+ · · ·+ np(s)

(s− λp)mp

so that
1 = n1(s)q1(s) + · · ·np(s)qp(s)

where

qi(s) =
ψA(s)

(s− λi)mi

Thus,
I = n1(A)q1(A) + · · ·+ np(A)qp(A)

so that
x = n1(A)q1(A)︸ ︷︷ ︸

x1

x+ · · ·+ np(A)qp(A)︸ ︷︷ ︸
x1

x

which in turn implies that

xi = ni(A)qi(A) = ni(A)
ψA(A)

(A− λiI)mi

so that
(A− λiI)mixi = 0n =⇒ xi ∈ N (A− λiI)mi

To show the decomposition is unique, we argue by contradiction. Let

xi ∈ N (A− λiI)mi

so that
x1 + · · ·+ xp = 0n

and wlog assume x1 ̸= 0. Then
x1 = −x2 − x3 − · · · − xp

so that
(A− λ2I)m2 · · · (A− λpI)mpx1 = 0n

But q1(s) and (s− λ1)m1 are co-prime meaning that

h1(s)q1(s) + h2(s)(s− λ1)m1 = 1
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This implies that
h1(A) q1(A)x1︸ ︷︷ ︸

0

+h2(A) (A− λ1I)m1x1︸ ︷︷ ︸
0

= x1 =⇒ x1 = 0 →←

Definition. (Multiplicities)
1. The geometric multiplicity of an eigenvalue λ is the dimension of Eλ.

2. The algebraic multiplicity of an eigenvalue λ is the number of times λ appears as a root of χA(λ).

Note. In general, the algebraic multiplicity and geometric multiplicity of an eigenvalue can differ. How-
ever, the geometric multiplicity can never exceed the algebraic multiplicity.

Fact. If for every eigenvalue of A, the geometric multiplicity equals the algebraic multiplicity, then A is
said to be diagonalizable.

If the minimal polynomial is

ψA(λ) =

k∏
i=1

(λ− λi)mi

with 1 ≤ mi ≤ di and di the algebraic multiplicity, then

Ni = N ((A− λiI)mi)

is the algebraic eigenspace andN (A−λiI) is the geometric eigenspace with dim(Ni) the algebraic multiplicity
and dim(N (A− λiI)) the geometric multiplicity.

Proposition. dimN (A− λiI)mi = di

Proof. see C& D, p.115

5.2 Jordan Form Details

Definition. (Jordan Block.) Let λ ∈ C. A Jordan block Jk(λ) is a k × k upper triangular matrix of the
form

Jk(λ) =



λ 1 0 · · · 0

0 λ 1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . λ 1
0 · · · · · · 0 λ


A Jordan matrix is any matrix of the form

J = diag(Jn1(λ1), . . . , Jnk
(λk))

where the matrices Jn1
are Jordan blocks. If J ∈ Cn×n, then n1 + n2 + · · ·+ nk = n.

Recall that
χA(s) = det(sI −A) = (s− λ1)n1 · · · (s− λk)nk

When eigenvalues are distinct, ni = 1 so that A is diagonalizable.

Theorem. (semisimple system) A square complex n × n matrix is semisimple if and only if there exists
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a nonsingular complex n× n matrix T−1 and diagonal complex n× n matrix Λ for which

A = T−1ΛT

or equivalently
Λ = TAT−1

The columns ei ∈ Cn of T−1 organized as

T−1 =

 | | |
e1 e2 · · · en
| | |

 ∈ Cn×n

and the diagonal entries λi ∈ C of Λ organized as

Λ = diag(λ1, λ2, . . . , λn) ∈ Cn×n

may be taken as n eigenvectors associated according to (1) with n eigenvalues λi of A that form a spectral
list.

Note: We call spectral list of A any n–tuple (λi)
n
i=1 of eigenvalues that is complete as a list of roots of the

characteristic polynomial χA

In other words, A ∈ Cn×n is semisimple iff A is diagonalizable by a similarity transformation.

Example 1. Modal Decomposition. Consider

ẋ = Ax+Bu

y = Cx

Define z = Tx. Then

ż = TAT−1z + TBu

y = CT−1z

Now consider the case where we have a single input/single output (SISO, e.g., m = 1 = p). Define

TB =


b̃1
b̃2
...

b̃n

 , CT−1 =
[
c̃1 c̃2 · · · c̃n

]

Then

C(sI −A)−1b =
c̃1b̃1
s− λ1

+ · · ·+ c̃nb̃n
s− λn

=

n∑
i=1

c̃ib̃i
s− λi

which is called the modal decomposition.

b̃1

b̃2

b̃n

u

1
s−λ1

1
s−λ2

1
s−λn

c̃1

c̃2

c̃n

Σ y
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Note: c(sI − A)−1b is called the transfer function. If c̃i or b̃i is zero, then the transfer function does not
contain the term 1/(s− λi).

Theorem. (Jordan Normal Form.) Let A ∈ Cn×n. Then there is a non-singular matrix P such that

A = Pdiag(Jn1
(λ1), . . . , Jnk

(λk))P
−1 = PJP−1

where Jni
(λi) is a Jordan block and

∑k
i=1 ni = n. The Jordan form J is unique up to permutations of

the blocks. The eigenvalues λ1, . . . , λk are not necessarily distinct. If A is real with real eigenvalues, then
P can be taken as real.

Suppose that
P−1AP = J = diag(J1, . . . , Jk)

where Ji = Jni
(λi). Express P as

P =
[
P1 · · · Pk

]
where Pi ∈ Cn×ni are the columns of P associated with i–th Jordan block Ji. We have that

APi = PiJi

Let Pi = [vi1 vi2 · · · vini
] so that

Avi1 = λivi1

that is, the first column of each Pi is an eigenvector associated with eigenvalue λi. For j = 2, . . . , ni,

Avij = vij−1 + λivij

These vi1, . . . , vini
are the generalized eigenvectors.

Example. Let A be an n by n square matrix. If its characteristic equation χA(t) = 0 has a repeated root
then A may not be diagonalizable, so we need the Jordan Canonical Form. Suppose λ is an eigenvalue of
A, with multiplicity r as a root of χA(t) = 0. The vector v is an eigenvector with eigenvalue λ if Av = λv
or equivalently

(A− λI)v = 0

The trouble is that this equation may have fewer than r linearly independent solutions for v. So we
generalize and say that v is a generalized eigenvector with eigenvalue λ if

(A− λI)kv = 0

for some positive k. Now one can prove that there are exactly r linearly independent generalized eigenvec-
tors. Finding the Jordan form is now a matter of sorting these generalized eigenvectors into an appropriate
order.
To find the Jordan form carry out the following procedure for each eigenvalue λ of A.
1. First solve (A− λI)v = 0, counting the number r1 of linearly independent solutions.

2. If r1 = r good, otherwise r1 < r and we must now solve

(A− λI)2v = 0.

There will be r2 linearly independent solutions where r2 > r1.

3. If r2 = r good, otherwise solve
(A− λI)3v = 0

to get r3 > r2 linearly independent solutions, and so on.

4. Eventually one gets r1 < r2 < · · · < rN−1 < rN = r.

Fact. The number N is the size of the largest Jordan block associated with λ, and r1 is the total
number of Jordan blocks associated to λ. If we define s1 = r1, s2 = r2 − r1, s3 = r3 − r2, . . . ,
sN = rN − rN−1 then sk is the number of Jordan blocks of size at least k by k associated to λ.
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5. Finally put m1 = s1 − s2, m2 = s2 − s3, . . . , mN−1 = sN−1 − sN and mN = sN . Then mk is the
number of k by k Jordan blocks associated to λ. Once we’ve done this for all eigenvalues then we’ve
got the Jordan form!

To find P such that J = P−1AP we need to do more work. We do the following for each eigenvalue λ:
1. First find the Jordan block sizes associated to λ by the above process. Put them in decreasing order

N1 ≥ N2 ≥ · · · ≥ Nk.

2. Now find a vector v1,1 such that (A− λI)N1v1,1 = 0 but (A− λI)N1−1v1,1 ̸= 0.

3. Define v1,2 = (A − λI)v1,1, v1,3 = (A − λI)v1,2 and so on until we get v1,N1 . We can’t go further
because (A− λI)v1,N1

= 0.

4. If we only have one block we’re OK, otherwise we can find v2,1 such that (A − λI)N2v2,1 = 0, and
(A− λI)N2−1v2,1 ̸= 0 and AND v2,1 is not linearly dependent on v1,1, . . . , v1,N1 .

5. Define v2,2 = (A− λI)v2,1 etc.

6. keep going if you have more blocks, otherwise you will have r linearly independent vectors
v1,1, . . . , vk,Nk

. Let
Pλ =

[
vk,Nk

· · · v1,1
]

be the n by r matrix.

7. do this for all λ’s then stack the Pλ’s up horizontally to get P

5.3 Functions of a matrix

Definition. (Functions of a matrix.) Let f̂(s) be any function of s analytic on the spectrum of A and
p̂(s) be a polynomial such that

f̂k(λℓ) = p̂k(λℓ)

for 0 ≤ k ≤ mℓ − 1 and 1 ≤ ℓ ≤ σ. Then
f̂(A) = p̂(A)

In fact, if m =
∑σ

i=1mi then
p̂(s) = a1s

m−1 + a2s
m−2 + · · ·+ ams

σ

where a1, a2, . . . , an are functions of

(f̂(λ1), f̂
1(λ1), f̂

2(λ1), . . . , f̂
m1(λ1), f̂(λ2), . . .)

and hence

f̂(A) = a1A
m−1 + · · ·+ amA

0 =

σ∑
ℓ=1

mℓ−1∑
k=0

pkℓ(A)f
k(λℓ)

where pkℓ’s are polynomials independent of f .

Example. Define

J2(λ, ε) =

[
λ 1
0 λ+ ε

]
with eigenvalues λ1 = λ and λ2 = λ+ ε. For any ε ̸= 0, J2(λ, ε) is diagonalizable. Computing eigenvector

[λ1I − J2(λ, ε)]v1 =

[
0 −1
0 −ε

]
v1 = 0 =⇒ v1 =

[
1
0

]
[
λ2I − J2(λ, ε)

]
v2 =

[
ε −1
0 0

]
v2 = 0 =⇒ v1 =

[
1
ε

]
and

T =
[
v1 v2

]
=

[
1 1
0 ε

]
, T−1 =

[
1 −1/ε
0 1/ε

]



Lecture 0: Review of Matrix Exponential [510] 15

we can evaluate

f(J2(λ, ε)) = Tf(Λ)T−1 =

[
1 1
0 ε

] [
f(λ) 0
0 f(λ+ ε)

] [
1 −1/ε
0 1/ε

]
=

[
f(λ) (f(λ+ ε)− f(λ))/ε
0 f(λ+ ε)

]
As J2(λ, ε)→ J2(λ) as ε→ 0 and f is continuous, if f is also differentiable at λ

f(J2(λ, ε)) = lim
ε→0

f(J2(λ, ε)) =

[
f(λ) f ′(λ)
0 f(λ)

]

5.4 Functions of a matrix (repeated eigenvalues)

Theorem. (General Form of f(A)) Let A ∈ Cn×n have a minimal polynomial ψA given by

ψA(s) =

σ∏
k=1

(s− λk)mk

Let the domain ∆ contain σ(A), then for any analytic function f : ∆→ C. we have

f(A) =

σ∑
k=1

mk−1∑
ℓ=0

f (ℓ)(λk)pkℓ(A)

where pkℓ’s are polynomials independent of f .

Consider

J =



λ 1 0 · · · 0

0 λ
. . . · · ·

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1

0 · · · · · · 0 λ


∈ Fn×n

Claim:

f(J) =


f(λ) f ′(λ) · · · f(n−1)(λ)

(n−1)!

0
. . .

. . . · · ·
...

. . .
. . . f1(λ)

0 · · · · · · f(λ)


Proof. the minimum polynomial is (s− λ)n. Thus,

f(J) =

n−1∑
ℓ=0

f (ℓ)(λ)pℓ(J)

Choose
f1(s) = 1 =⇒ f1(J) = I = f

(0)
1 p0(J) =⇒ p0(J) = I

f2(s) = s− λ =⇒ f2(J) = J − λI = f
(1)
2 (λ)p1(J) =⇒ p1(J) = J − λI

f3(s) = (s− λ)2 =⇒ f3(J) = (J − λI)2 = f
(2)
3 (λ)p2(J) =⇒ 2p2(J) = (J − λI)2
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Hence

p0(J) = I

p1(J) = J − λI

p2(J) =
1

2
(J − λI)2

Thus,

f(J) =



f(λ) f ′(λ) f ′′(λ)
2 · · · f(n−1)(λ)

(n−1)!

0
. . .

. . .
. . .

...
... · · ·

. . .
. . . f ′′(λ)

2
... · · ·

. . .
. . . f ′(λ)

0 · · · · · · · · · f(λ)



Hence we have

Theorem. (Spectral Mapping Theorem.)

σ(f(J)) = f(σ(J)) = {f(λ), f(λ), . . . , f(λ)}

and more generally that
σ(f(A)) = f(σ(A))

Example.

eJi(λt) =



eλt teλt t2

2! e
λt · · · ti−1

(i−1)!e
λt

. . .
. . .

. . .
...

. . .
. . . t2

2! e
λt

. . . teλt

0 eλt


What does this mean? Well more generally if we had

J = diag


λ1 1 0
0 λ1 1
0 0 λ1

 , [λ1 1
0 λ1

]
,

[
λ2 1
0 λ2

]
, λ2


Recall that this Jordan form my be obtained from A by the similarity transform

J = TAT−1

where
T−1 =

[
e1 v1 w1 e2 v2 e3 v3 e4

]
where e1, . . . , e4 are eigenvectors and the rest are generalized eigenvectors. Then

f(A) = f(T−1JT ) = T−1f(J)T

where

f(J) = diag


f(λ1) f ′(λ1)

f ′′(λ1)
2

0 f(λ1) f ′(λ1)
0 0 f(λ1)

 , [f(λ1) f ′(λ1)
0 f(λ1)

]
,

[
f(λ2) f ′(λ2)
0 f(λ2)

]
, f(λ2)
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Example. Compute eAt for

A =

[
0 2
−1 −2

]
Eigenvalues:

det(λI −A) =
∣∣∣∣[λ −1
1 λ2

]∣∣∣∣ = λ2 + 2λ+ 1 = (λ+ 1)2 = 0 =⇒ λ1 = λ2 = −1

Eigenvector:

(1I −A)v1 =

[
−1 −1
1 1

]
v1 = 0, =⇒ v1 =

[
1
01

]
Generalized eigenvector:

v11 = v1, (A− 1I)v12 =

[
1 1
−1 −1

]
v12 =

[
1
−1

]
v11, =⇒ v12 =

[
1
0

]
Jordan form:

T =
[
v11 v12

]
=

[
1 1
−1 0

]
, T−1 =

[
0 −1
1 1

]
, J =

[
−1 1
0 −1

]
Matrix exponential:

eAt = TeJ2(−t)T−1 =

[
1 1
−1 0

] [
e−t te−t

0 e−t

] [
0 −1
1 1

]
=

[
(t+ 1)e−t te−t

−te−t (1− t)e−t

]


