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Module 4: Linear Quadratic Regulator
Lecturer: L.J. Ratliff

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications,
meaning you should take your own notes in class and review the provided references as opposed to taking
these notes as your sole resource. I provide the lecture notes to you as a courtesy; it is not required that I
do this. They may be distributed outside this class only with the permission of the Instructor.

References. Chapter 11 and 15 [JH]; Chapter 8/8d, [C&D]. Note that 8d in [C&D] is the discrete time
chapter on controllability and observability.
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Introduction to Optimal Control Synthesis

The goal of this module is to introduce optimal control synthesis for linear systems given a quadratic cost
function. We will review several methods for obtaining the optimal controller including dynamic program-
ming, nonlinear programming, and the Hamiltonian approach. We will cover both discrete and continuous
time. Discrete time provides a lot of intuition especially for dynamic programming and so we start with
that.

1 M4-RL1: Nonlinear Programming Primer

This lecture’s notes: basics of optimization (non-linear programming).

Goal: necessary and sufficient conditions for local optimality in non-linear programs

Refs: [Str14], pg. 29–41 [LSV12] Lewis Chapter 1
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1.1 Unconstrained Non-Linear Programming

Suppose you are asked to minimize the function F : Rm → R : u 7→ F (u), i.e. to solve the nonlinear program
(NLP)

min
u∈Rm

F (u)

F is called the objective function.

Definition 1. The following are definitions of minimizers/maximizers:

• We say that u ∈ Rm is a local minimizer for NLP if there exists an open set V ⊂ Rm, containing u such
that

F (u) ≤ F (v), ∀v ∈ V

• We say that u is a strict local minimizer if the inequality is strict (<).

• We say that u is a local maximizer if it is a local minimizer for

min
u∈Rm

−F (u).

Consider cost F : R → R. We can expand F about a nominal point u0 using a Taylor approximation:

F (u) = F (u0) +DuF (u)|u=u0(u− u0) +
1

2
D2F (u)|u=u0(u− u0)

2 + o((u− u0)
3)︸ ︷︷ ︸

h.o.t.

where h.o.t. stands for higher order terms. We can define perturbations in F and u:

δF = F (u)− F (u0)

δu = u− u0

and neglecting h.o.t., the expansion leads to

δF = DuF (u)|u=u0
δu+

1

2
D2

uF (u)|u=u0
(δu)2

If u0 is a stationary point, DuF (u) = 0 and the location variation in F is entirely due to second (and higher)
derivatives of the function:

δF =
1

2
D2

uF (u)|u=u0(δu)
2

Hence the variation of F in the neighborhood of the stationary point is well approximated as a quadratic
form of the scalar variable δu. This observation will prove useful in later consideration of more complex
problems.

This whole thing extends to the non-scalar case F : Rm → R. The Taylor approximation is given by

F (u) = F (u0) +DuF (u)|u=u0
(u− u0) +

1

2
(u− u0)

⊤(D2
uF (u)|u=u0

)(u− u0) + o(∥u− u0∥3)

Note that here we are using the appropriate co-vector form of DuF :

DuF (u0) = [Du1F (u0) · · · DumF (u0)]

The second derivative D2
uF (u) is just the Hessian:

D2
uF (u0) =


D2

11F (u) D2
12F (u) · · · D2

1mF (u)

D2
21F (u)

. . .
. . . D2

1mF (u)
...

...
. . .

...
D2

m1F (u) D2
m2F (u) · · · D2

mmF (u)


u=u0
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F is critical at the point u = u0 simultaneous variations in all the components of u have negligible effect on
the value of F . The gradient of F must be zero at a stationary point:

DuF (u0) = 0

And of course, the Hessian is

• positive definite at a min

• negative definite at max

• neither at an inflection (saddle) point

Definition 2. We say u0 ∈ Rm is a critical point for NLP if DF (u0) = 0.

This assumes that F ∈ C1 at u0.

Theorem 3 (sufficient conditions for optimality). A stationary point u0 ∈ Rm is

• a strict local min if D2F (u0) ≻ 0

• a strict local max if D2F (u0) ≺ 0

Assumes F ∈ C2 at u0.

Theorem 4 (necessary conditions for optimality). If u0 ∈ Rm is a local minimizer for NLP:

• if F ∈ C1 at u0 then DF (u0) = 0

• if F ∈ C2 at u0 then D2F (u0) ⪰ 0

Actually defining the value of u that causes F to be minimized can be difficult if the dimension of u is high
or if the shape of F is intricate.

In such a case, an iterative numerical technique such as Newton-Raphson can be used. If the second order
approximation fits F exactly in the vicinity of the minimum, where u = u⋆, then the following should hold:

0 = DuF (u⋆) = DuF (u0) + (u⋆ − u0)
⊤D2

uF (u0)

This leads to
u⋆ = u0 − (D2

uF (u0))
−1DuF (u0)

⊤

Example. Suppose second order approx. to F at u0 ∈ Rm is exact, i.e.,

(F (u)− F (u0)) = b⊤(u− u0) +
1

2
(u− u0)

⊤C(u− u0)

1. Determine necessary conditions on b⊤ ∈ R1×m, C⊤ = C for u0 ∈ Rm to be local min:

It is necessary that DF (u0) = b⊤ + (u0 − u0)
⊤C = b⊤ = 0, and D2F (u0) = C = 0.

2. Determine sufficient conditions on specDF (v) for u0 ∈ Rm to be a strict local min:

It is sufficient that ∀ σ ∈ D2F (v) : σ > 0.

3. Now assuming a strict local min, solve for u0:

In this case D2F (v) is invertible because all the eigenvalues are greater than 0, so

u0 = u− (D2F (u))−1DF = F (u)⊤

is a strict local min for any u ∈ Rm. This is called the Newton-Raphson formula.

Q: Why does open set matter for local optimality?
A: It doesnt really in the sense that you can define a local optimum on a non-empty compact (closed, bounded
in Rn). However, we define it on an open set as I mentioned due to the fact we define local optimality with
respect to derivatives and those need to be define on more than just a point (that is the idea with derivatives,
that we are looking at what the function does for small perturbations).
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1.2 Constrained NLP

Goal: Sufficient conditions for local optimality in NLP subject to constraints.

Generally, a constrained NLP is given by the following:

min
u∈Rm

F (u)

s.t. f(u) = 0

where F : Rl → R, f : Rl → Rn.

Let us first build up to this.

Our function F : Rℓ → R : u 7→ F (u) from before can represent a scalar cost function of the m dimensional
control vector u; hence, the problem of finding the value of u that minimizes F provides an introduction to
optimal control.

In the unconstrained case, ℓ components of u must be defined in order to specify the minimum of F .

Now, if we add a scalar equality constraint
f(u) = 0

then there are at most ℓ − 1 independent components of u. That is the order of the optimization problem
has been reduced by one.

If we add a vector equality constraint
f(u) = 0

where f(u) ∈ Rℓ1 and the dimension of u is ℓ = ℓ1 + ℓ2. Then ℓ1 components of u are specified as functions
of the remaining ℓ2 terms which are varied until F (u) is at a minimum.

One option is to partition u as u = u1 + u2 with ui ∈ Rℓi . Then we are interested in solving

minu∈Rm F (u1, u2)
s.t. f(u1, u2) = 0

Alternatively, we can make the following changes in notation (getting closer to optimal control!):

x = u1 ∈ Rn

u = u2 ∈ Rm

Then we want to solve
minu∈Rl F (x, u)
s.t. f(x, u) = 0

Of course, we can think of x as the state vector and u as the control vector.

Coming back to our original constrained NLP:

minu∈Rm F (w)
s.t. f(w) = 0

If we split w ∈ Rl into w = (x, u) ∈ Rn × Rn, solve equation f(x, u) = 0 for x in terms of u, x : Rm → Rn,
then could equivalently solve

min
u∈Rm

F (x(u), u)

In general it is hard to solve f(x, u) = 0.

Note. You may have also seen inequality constraints such as f(w) ≥ 0. We will not deal with those for now.
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Example: We can show how in principle to reduce this to an unconstrained NLP.

Constraints can be dealt with in a number of ways including the following näıve way. You did this on your
homework hopefully. Consider the cost

F (u1, u2) = u2
1 − 2u1u2 + 3u2

2 − 40

Suppose this represents some bowl shaped valley. There is a straight path through the valley defined by

0 = f(u1, u2) = −u2 + u1 + 2

What is the lowest point on the path?

First this can be written as a constrained problem:

min
u1,u2

{
u2
1 − 2u1u2 + 3u2

2 − 40 | 0 = −u2 + u1 + 2
}

Q: what is the näıve thing to do?

A: solve the constraint for one variable, say u2, and plug it in to the cost.

min
u1

{
u2
1 − 2u1(u1 + 2) + 3(u1 + 2)2 − 40

}
We can solve this now unconstrained problem in the usual way. First order conditions:

0 =
dF

du1
= 2u1 − 4u1 − 4 + 6(u1 + 2) = 4u1 + 8 =⇒ u⋆

1 = −2, u⋆
2 = 0, F (u⋆

1, u
⋆
2) = −36

Q (DIY): How does this compare with the optimal solution of the unconstrained problem?

An alternative view. Instead of reducing the unconstrained NLP, we augment the cost function to be

F̃ (x, u, λ) = F (x, u) + λf(x, u),

where there are n+m+ n unknowns:

x ∈ Rn, u ∈ Rm, λ ∈ R1×n.

• n equations to define λ

• n equations to find x

• m equations to find u

Defn. λ ∈ Rn are called the Lagrange multipliers. (sometimes called adjoint vector or costate vector).
λf(x, u) ∈ R is a scalar and it always equals zero when f(x, u) = 0 is satisfied.

History Lesson. Giuseppe Lodovico Lagrangia (aka Joseph Lagrange) (1736–1813) derived methods for
solving variational problems in classical mechanics. He was an Italian Enlightenment Era mathematician
and astronomer. He was so good that Euler, Maupertuis, and d’Alembert tried to encourage him to come
to Berlin. But, he wouldn’t go until Euler left.

As in the unconstrained case, for (x0, u0, λ0) to be local min for F̃ , it is necessary that DF̃ (x0, u0, λ0) = 0.

Perturbations in x and u lead to perturbations in F̃ . To first order,

δF̃ = DxF̃
∣∣
(x,u)=(x0,u0)

δx+DuF̃
∣∣
(x,u)=(x0,u0)

δu

where

DxF̃ = DxF + λDxf

DuF̃ = DuF + λDuf
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Note. The partial derivative of f wrt u is the n×m Jacobian matrix with elements Dujfi. And, the partial
derivative of f wrt x is the n× n Jacobian matrix with elements Dxjfi.

History Lesson. Carl G. J. Jacobi (1804–1851)

Q: Determine necessary condition on λ0, assuming Dxf(x0, u0) is invertible.

A: DxF̃ = DxF + λDxf , so if Dxf(x0, u0) invertible then its necessary that

λ0 = −DxF (x0, u0)[Dxf(x0, u0)]
−1

(i.e. DxF̃ ≡ 0 when λ = λ0 is chosen as above).

DuF̃ = DuF + λDuf , so necessary that

DuF (x0, u0) + λ0Duf(x0, u0) = 0

DλF̃ = f , so also necessary that f(x0, u0) = 0

We now have enough equations to specify stationary points for constrained NLP.

Definition 5 (Constrained NLP Stationary Point). (x0, u0) ∈ Rn×m is a stationary point for

min(x,u)∈Rn×m F (x, u)
s.t. f(x, u) = 0

if

• DuF (x0, u0) + λ0Duf(x0, u0) = 0

• f(x0, u0) = 0

• Dxf(x0, u0) is invertible

• λ0 = −DxF (x0, u0)[Dxf(x0, u0)]
−1

The second order condition for optimality: First, write

F̃ (x, u, λ) = F (x, u) + λf(x, u)

so that
F̃x = DxF̃ = DxF + λDxf = Fx + λfx

Then the Taylor expansion gives

DF̃ =
[
F⊤
x F⊤

u

] [dx
du

]
+

1

2

[
dx⊤ du⊤] [Fxx Fxu

Fux Fuu

] [
dx
du

]
+O(3)

(where O(k) denotes higher order terms in the expansion of order k and above) and

Df =
[
f⊤
x f⊤

u

] [dx
du

]
+

1

2

[
dx⊤ du⊤] [fxx fxu

fux fuu

] [
dx
du

]
+O(3)

where, e.g.,
Fxx = D2

xF, Fxu = D2xuF, fxx = D2
xf, fxu = D2

xuf

and so on and the ’big O’ notation just means ’higher order terms’ for our purpose. Thus,[
1 λ

] [DF
Df

]
=

[
F̃⊤
x F̃⊤

u

] [dx
du

]
+

1

2

[
dx⊤ du⊤] [F̃xx F̃xu

F̃ux F̃uu

] [
dx
du

]
+O(3)

At critical points (stationary points) F̃x = 0, F̃u = 0, and Df = 0 (necessarily) so that the above equation
for Df implies

dx = −f−1
x fudu+O(2)
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We can plug this in the above expression to get that

DF̃ =
1

2
du⊤ [

−f⊤
u f−⊤

x I
] [F̃xx F̃xu

F̃ux F̃uu

] [
−f−1

x fu
I

]
du+O(3)

Note that dx is replaced with an expression of du due to the first-order optimality conditions.

To ensure a minimum, DF̃ above should be positive for all increments du. This is guaranteed if the curvature
matrix with constant f equal to zero, i.e.

D2
uF̃ = F̃uu =

[
−f⊤

u f−⊤
x I

] [F̃xx F̃xu

F̃ux F̃uu

] [
−f−1

x fu
I

]
= Fuu − f⊤

u f−⊤
x Fxu − Fuxf

−1
x fu + f⊤

u f−⊤
x Fxxf

−1
x fu,

is positive definite. Note that if the constraint f(x, u) is identically zero for x, u then the above reduces to
the unconstrained case (unsurprisingly).

Moreover, if F̃uu is negative definite (indefinite), then the stationary point is a constrained maximum (saddle
point).

Theorem 6 (Sufficient Conditions for Optimality). A stationary point (x0, y0) ∈ Rn×m is:

1. A strict local min if D2
uF̃ (x0, u0) > 0.

2. A strict local max if D2
uF̃ (x0, u0) < 0.

References

[Str14] S. Strogatz, ‘Nonlinear Dynamics and Chaos,’ Westview Press, Ed: 2nd , 2014.

[LVS12] F.L. Lewis, D.L. Varbie, and V.L. Syrmos, “Optimal Control,” John Wiley & Sons, Inc.,
2012.

2 M4-RL2: Dynamic Programming and Discrete Time LQR

Goal: Learn the basics of dynamic programming via discrete time linear quadratic regulator (LQR)

2.1 Bellman’s Principle

In previous lectures, we have discussed the Lyapunov equation and NLP. We will see how these two things
combine to enable us to solve optimal control problems.

We will start with discrete time in order to give some intuition for dynamic programming and to better
connect with the NLP framework we recently discussed.

Suppose we have a DT difference equation

x+ = f(x, u), x ∈ Rn, u ∈ Rm

and we want to choose inputs over time u : [0, t] → Rm to minimize some cost

V (x, u) = ℓ(t, x(t))︸ ︷︷ ︸
’final’ cost

+

t−1∑
k=0

L(k, x(k), u(k))︸ ︷︷ ︸
’running’ cost
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History Lesson: Richard Bellman developed the key insight for ’recursion’ in optimal control in 1957. That
is, the optimal control at time t depends only on x(t) (i.e. not on previous states).

This key insight leads naturally to working backward from final time to determine optimal policy.

Let V ⋆
k (x(k)) denote the lowest (i.e. optimal) cost achievable from state x(k) at time k,

V ⋆
k (x(k)) = min

u(k)∈Rm

(
L(k, x(k), u(k)) + V ⋆

k+1(x(k + 1))
)

where
x(k + 1) = f(x(k), u(k))

depends on u(k).

This is referred to as the Bellman Equation and it enables us (in principal) to determine optimal control
inputs by solving a sequence of NLP in backward time!

2.2 DT Linear Quadratic Regulator

Consider
x(t+ 1) = Ax(t) +Bu(t), x(0) = x0

and

J(u) = xT
NQfxN +

N−1∑
k=0

(
x(k)TQx(k) + u(k)TRu(k)

)
where u = (u(0), . . . , u(N − 1)) and Q = QT ≥ 0, Qf = QT

f ≥ 0, R = RT > 0 are the given state cost, final
state cost, and input cost matrices.

• N is the time horizon

• first term measures state deviation

• second term measures input size or actuator authority

• last term measures final state deviation

• Q, R set relative weights of state deviation and input usage

• R > 0 means any (non-zero) input adds cost to J

LQR Problem: find u⋆ that minimizes J(u).

Q: how does this compare to other problems you may be familiar with?

2.2.1 Comparison to Least Norm

Consider the least norm input problem where you must determine the least norm input that steers x to
xN = 0:

• no cost attached to x0, . . . , xN−1

• xN must be exactly zero

We can approximate this problem in the above framework by letting R = I, Q = 0 and Qf >> I (e.g.,
Qf = 108I).
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2.2.2 Multi-Objective Interpretation

Common form for Q and R:
R = ρI, Q = Qf = CTC

where C ∈ Rp×n (p size of output), ρ ∈ R with ρ > 0. Fix x(0) = x0.

The cost is then

J(u) =

N∑
k=0

∥y(k)∥2︸ ︷︷ ︸
output cost: Jo(u)

+ρ

N−1∑
k=0

∥u(k)∥2︸ ︷︷ ︸
input cost: Ji(u)

where
y = Cx

Here,
√
ρ gives the relative weighting of output norm and input norm.

The input and output costs Ji(u) and Jo(u) respectively are competing objectives. We want both of them
to be small.

Then the LQR cost is Jo(u) + ρJi(u).

Ji

J0
u3

u1

u2

• Above the cyan curve shows (Ji, Jo) achieved by some u

• below the same cure shows (Ji, Jo) not achieved by any u

• Three samples inputs u1, u2, u3 are shown

• u3 is worse than u2 on both parameters Ji, Jo

• u1 is better than u2 in Ji but worse in Jo

Where J = Jo + ρJi = constant corresponds to lines with slope −ρ on the (Ji, Jo) plot.

LQR optimal input is at boundary of shaded region, just touching the line of smallest possible J . Hence, u2

in the plot is optimal for ρ. By varying ρ from 0 to +∞, can sweep optimal tradeoff curve.
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2.3 LQR as least squares

LQR can be formulated and solved as a least squares problem. Let X = (x0, . . . , xN ) where xk = x(k). The
state is a linear function of x0 and u = (u0, . . . , uN−1):

x0

...
xN

 =


0 · · · · · · · · ·
B 0 · · · · · ·
AB B 0 · · ·
...

...
. . .

...
AN−1B AN−2B · · · B


︸ ︷︷ ︸

G

 u0

...
uN−1


︸ ︷︷ ︸

u

+


I
A
...

AN


︸ ︷︷ ︸

H

x0

Then we can express X = Gu+Hx0 where G ∈ RNn×Nm and H ∈ RNn×m

Thus the LQR cost is

J(u) =
∥∥∥diag(Q1/2, . . . , Q1/2, Q

1/2
f )(Gu+Hx0)

∥∥∥2 + ∥∥∥diag(R1/2, . . . , R1/2u
∥∥∥2

This is simply a big least squares problem! The solution method requires forming and solving a Least squares
problem with size N(n+m)×Nm. Using a näıve method (e.g., QR factorization), cost is O(N2nm2).

2.4 Dynamic Programming Solution

• givens an efficient, recursive method to solve LQR least-squares problem; cost is O(Nn3)

• (but in fact, a less naive approach to solve the LQR least-squares problem will have the same com-
plexity)

• DP is a useful and important idea on its own (it is applied in a number of domains including search,
RL, MDPs, etc.)

Definition 7. For t = 0, . . . , N define the value function Vt : Rn → R by

Vt(z) = min
ut,...,uN−1

N−1∑
k=t

(xT
kQxk + uT

kRuk) + xT
NQfxN

subject to
xt = z, xk+1 = Axk +Buk, k = t, . . . , N

• Vt(z) gives the minimum LQR cost-to-go, starting from state z at time t

• V0(x0) is minimum LQR cost (from state x0 at time 0

We will see that

• Vt is quadratic, i.e. Vt(z) = zTPtz, where Pt = PT
t ≥ 0 (this should look super familiar, like a

Lyapunov function and hence we can tie this back to what we initially learned at the beginning of the
quarter)

• Pt can be found recursively, working backward from t = N

• the LQR optimal u is easily expressed in terms of Pt

The cost to go with no time left is just the final state cost

VN (z) = zTQfz

Thus, we have that PN = Qf
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2.4.1 Dynamic Programming Principle

Q: Suppose we know Vt+1(z). What is the optimal choice for ut?

choice of ut impacts current cost incurred (through uT
t Rut) and where we end up, i.e. xt+1 (hene, the

min-cost-to-go from xt+1

Definition 8. The dynamic programming principle is

Vt(z) = min
w

(zTQz + wTRw + Vt+1(Az +Bw)

where

• zTQz + wTRw is cost incurred at time t if ut = w

• Vt+1(Az +Bu) is min cost-to-go from where you land at t+ 1

This follows from the fact that we can minimize in any order:

min
w1,...,wk

f(w1, . . . , wk) = min
w1

(
min

w2,...,wk

f(w1, . . . , wk)

)
︸ ︷︷ ︸

a fn of w1

in words: min cost-to-go from where you are = min over (current cost incurred + min cost-to-go from where
you land)

Example: path optimization

• edges show possible flights and each has some cost (weight)

• e.g., want to find min cost route or path from Seattle to Atlanta

Q: what is the DP solution in this context?

• V (i) is min cost from airport i to ATL, over all possible paths

• to find min cost from city i to ATL: minimize sum of flight cost plus min cost to ATL from where you
land, over all flights out of city i (gives optimal flight out of city i on way to ATL)

• if we can find V (i) for each i, we can find min cost path from any city to ATL

• DP principle: V (i) = minj(cji + V (j)), where cji is cost of flight from i to j, and minimum is over all
possible flights out of i

2.4.2 HJ equation for LQR

Vt(z) = zTQz +min
w

(wTRw + Vt+1(Az +Bw))
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• called DP, Bellman, or Hamilton-Jacobi equation

• gives Vt recursively in terms of Vt+1

• any minimizing w gives optimal ut:

u⋆
t = argmin

w
(wTRw + Vt+1(Az +Bw))

Let us assume that Vt+1(z) = zTPt+1z, with Pt+1 = PT
t+1 ≥ 0. We will show that Vt has the same form!

By DP,
Vt(z) = zTQz +min

w

(
wTRw + (Az +Bw)TPt+1(Az +Bw)

)
Here comes the NLP! we can solve by setting the derivative wrt w to zero:

2wTR+ 2(Az +Bw)TPt+1B = 0

Hence the optimal input is
w⋆ = −(R+BTPt+1B)−1BTPt+1Az

and after a bunch of algebra (check your self!) we get

Vt(z) = zTQz + (w⋆)TRw⋆ + (Az +Bw⋆)TPt+1(Az +Bw⋆)

= zT (Q+ATPt+1A−ATPt+1B(R+BTPt+1B)−1BTPt+1A)z

= zPt z

where
Pt = Q+ATPt+1A−ATPt+1B(R+BTPt+1B)−1BTPt+1A

This should look very familiar (discrete time Lyapunov?). Hence, it is easy to show that PT
t = Pt ≥ 0 (do

this your self!)

2.5 Summary of LQR via DP

step 1 set PN = Qf

step 2 for t = N, . . . , 1, do

Pt−1 = Q+ATPtA−ATPtB(R+BTPt+1B)−1BTPtA

step 3 for t = 0, . . . , N − 1, define
Kt = −(R+BTPt+1B)−1BTPt+1A

step 4 for t = 0, . . . , N − 1, optima u is given by

u⋆
t = Ktxt

What else do we notice?

• optimal u is a linear function of the state (called linear state feedback)

• recursion for min cost-to-go runs backward in time
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2.6 Final Comments on DT LQR

The following are some additional comments:

• another name for the recursion for Pt is the Riccati recursion

• usually Pt rapidly converges as t decreases below N (remember we are going backward in time)

• the limit or steady-state (ss) value Pss satisfies the following Riccati equation:

Pss = Q+A⊤PssA−A⊤PssB(R+B⊤PssB)−1B⊤PssA

i.e. the DT algebraic Riccati equation (ARE)

• for t not close to the horizon N , LQR optimal input is approximately a linear constant state feedback

ut = Kssxt, Kss = −(R+B⊤PssB)−1B⊤PssA

3 M4-RL3: LQR via NLP

Goal: Convert the DT LQR problem to a constrained NLP and solve via the adjoint method.

References: [Str14] §3.4; [LVS12] Lewis §6

3.1 LQR via constrained NLP

Matrix inversion identities:

1. (I +AB)−1 = I −A(I +AB)−1B

2. A(I +AB)−1 = (I +BA)−1B

3. (I +AC−1B)−1 = I −A(C +BA)−1B

Recall the following matrix inversion lemma from linear algebra or [510]:

Lemma 9. For appropriately dimensioned matrices, the following holds:

(A+BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1

This allows us to convert the Riccati recursion into a different form:

Pt−1 = Q+A⊤PtA−A⊤PtB(R+B⊤PtB)−1B⊤PtA

= Q+A⊤Pt(I −B(R+B⊤PtB)−1B⊤PtA

= Q+A⊤Pt(I −B
(
(I +B⊤PtBR−1)R

)−1
B⊤PtA

= Q+A⊤Pt(I −BR−1(I +B⊤PtBR−1)−1B⊤Pt)A

= Q+A⊤Pt(I +BR−1B⊤Pt)
−1A

= Q+A⊤(I + PtBR−1B⊤)−1PtA

which can be converted to the following symmetric form

Pt−1 = Q+A⊤P
1/2
t (I + P

1/2
t BR−1B⊤P

1/2
t )−1P

1/2
t A
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3.2 Recall NLP’s

Recall the constrained NLP’s we looked at before the midterm:

min
x

F (x)

s.t. Gx = h

where F : Rn → R and G ∈ Rm×n.

The Lagrangian is given by
L(x, λ) = F (x) + λ⊤(h−Gx)

If x is optimal, then
DxL = DF (x)−G⊤λ = 0, DλL = h−Gx = 0

Interesting connection to the linear algebra we saw last quarter ([510]): the first equation implies that
DF (x) = G⊤λ for some λ. This is true if and only if DF (x)⊤ ∈ R(G⊤) if and only if DF (x)⊤⊥N (G)
(behold! the many applications of FROL—Finite Rank Operator Lemma).

3.3 Recall Descent Directions

Suppose x is current, feasible point (i.e. Gx = h). Consider a small step in the direction v, to x + γv (γ
small, positive step size).

Q: When is x+ γv better than x?

A: We need the following:

1. x+ γv to be feasible:
G(x+ γv) = h+ γGv = h =⇒ Gv = 0

Hence, v ∈ N (G) is called a feasible direction.

2. x+ γv to have a smaller objective than x:

F (x+ γv) ≃ F (x) + γDF (x)v < F (x)

so we need DF (x)v < 0 (i.e. descent direction)

Note that if DF (x)v0, −v is a descent direction, so we need only DF (x)v ̸= 0.

x is not optimal if there exists a feasible descent direction.

if x is optimal, every feasible direction satisfies DF (x)v = 0. Hence,

Gv = 0 =⇒ DF (x)v = 0 ⇐⇒ N (G) ⊂ N (DF (x))

⇐⇒ R(G⊤) ⊃ R(DF (x)⊤)

⇐⇒ DF (x)⊤ ∈ R(G⊤)

⇐⇒ DF (x)⊤ = G⊤λ for some λ ∈ Rn

⇐⇒ DF (x)⊤⊥N (G)

3.4 LQR as Constrained Minimization Problem

Consider the following

min
u

J =
1

2

N−1∑
t=0

(
x⊤
t Qxt + u⊤

t Rut

)
+

1

2
x⊤
NQfxN

s.t. xt+1 = Axt +But, t = 0, . . . , N − 1
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• variables are u0, . . . , uN−1 and x1, . . . , xN (x’s can actually be specified in terms of u’s via the constraint
as we have seen before).

• x0 is given

• the objective is quadratic (i.e. it is convex)

First step is to introduce Lagrange multipliers.

Q: How many do we need?

A: λi ∈ Rn for i = 1, . . . , N .

Next step is to form the Lagrangian:

L = J +

N−1∑
t=0

λ⊤
t+1(Axt +But − xt+1)

Optimality Conditions. Q: What are the optimality conditions?

A: First, x0 is given and we know that

xt+1 = Axt +But, t = 0, . . . , N − 1

We can take the derivative of L with respect to ut to get

Dut
L = Rut +B⊤λt+1 = 0, t = 0, . . . , N − 1

Hence,
ut = −R−1B⊤λt+1

Similarly, we can write first order conditions for xt:

Dxt
L = Qxt +A⊤λt+1 − λt = 0, t = 0, . . . , N − 1

Hence
λt = A⊤λt+1 +Qxt

Finally,
DxN

L = QfxN − λN = 0

so that λN = QfxN

This is a set of linear equations in the variables

u0, . . . , uN−1, x1, . . . , xN , λ1, . . . , λN

Co-State Equations. Q: What do you notice about these equations?

A: we have a forward equation for x and a backward equation for λ. . .

Optimality conditions break into two parts:

xt+1 = Axt +But, x0

this recursion for state x runs forward in time, with initial condition

λt = A⊤λt+1 +Qxt, λN = QfxN

this recursion for co-state λ runs backward in time, with final condition

As mentioned before, the recursion for λ is sometimes called the adjoint system.
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Solution via Riccati Recursion. We will see that λt = Ptxt where Pt is the min-cost-to-go matrix defined
by the Riccati recursion we saw last time. This implies that the Riccati recursion gives a useful way to solve
this set of linear equations.

Q: How do we show this?

A: via induction like last time.

First, it holds for t = N , since PN = Qf and λN = QfxN

Now, suppose it holds for t+1, that is, λt+1 = Pt+1xt+1. Let’s show it holds for t. Using the state equation
xt+1 = Axt +But and ut = −R−1B⊤λt from our optimality conditions, we get that

λt+1 = Pt+1(Axt +But) = Pt+1(Axt −BR−1B⊤λt+1)

so that
λt+1 = (I + Pt+1BR−1B⊤)−1Pt+1Axt

We can then use the co-state equation λt = A⊤λt+1 +Qxt to get that

λt = A⊤(I + Pt+1BR−1B⊤)−1Pt+1Axt +Qxt = Ptxt

since by the Riccati recursion we know that

Pt = Q+A⊤(I + Pt+1BR−1B⊤)−1Pt+1A.

This completes the induction argument so that λt = Ptxt.

Check for consistency across the two methods.

ut = −R−1B⊤λt+1

= −R−1B⊤(I + Pt+1BR−1B⊤)−1Pt+1Axt

= −R−1(I +B⊤Pt+1BR−1)−1B⊤Pt+1Axt

= −
(
(I +B⊤Pt+1BR−1)R

)−1
B⊤Pt+1Axt

= −(R+B⊤Pt+1B)−1B⊤Pt+1Axt

4 M4-RL4: CT LQR

Goal: Understand CT LQR.

References: Stengel §3.4 (DP solution, pg. 274); Lewis §3 (pg. 135, adjoint approach)

Consider the CT system
ẋ = Ax+Bu, x(0) = x0

The problem is to choose u : [0, T ] → Rm so as to minimize

J =

∫ T

0

(x(τ)⊤Qx(τ) + u(τ)⊤Ru(τ)) dτ + x(T )⊤Qfx(T )

We have a similar set up:

• T is horizon

• Q = Q⊤ ⪰ 0, Qf = Q⊤
f ⪰ 0, R = R⊤ ≻ 0 are the state cost, final state cost and input cost matrices

This is now an infinite dimensional problem since u : [0, T ] → Rm is the variable.
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4.1 DP solution

As in the DT case, we define a value function Vt : Rn → R by

Vt(z) = min
u

∫ T

t

(
x(τ)⊤Qx(τ) + u(τ)⊤Ru(τ)

)
dτ + x(T )⊤Qfx(T )

subject to x(t) = z, ẋ = Ax+Bu

Some notes:

• The minimization is taken over all possible signals u : [t, T ] → Rm.

• Vt(z) gives the minimum LQR cost-to-go, starting from state z at time t

• VT (z) = z⊤Qfz
T

Note. Vt is quadratic, i.e., Vt(z) = z⊤Ptz, where Pt = PT
t ≥ 0

Moreover, like the DT case: Pt can be found from a differential equation running backward in time from
t = T . And, the LQR optimalu is easily expressed in terms of Pt.

4.2 DP Approach

Start with x(t) = z. Let us take u(t) = w ∈ Rm, a constant, over the time interval [t, t+ h], where h > 0 is
small.

Just as with the usual DP approach, we want to approximate the value at time t forward as the instantaneous
cost incurred where we are plus the cost to go over the remainder of the horizon.

We will do this in an approximate manner.

First, the cost incurred over [t, t+ h] is∫ t+h

t

(
x(τ)⊤Qx(τ) + u(τ)⊤Ru(τ)

)
dτ ≃ h(z⊤Q+ w⊤Rw)

and we end up at x(t+ h) ≃ z + h(Az +Bw).

Second, the min-cost-to-go from where we end-up is approximately given by

Vt+h(z + h(Az +Bw)) = (z + h(Az +Bw))⊤Pt+h(z + h(Az +Bw))

≃ (z + h(Az +Bw))⊤(Pt + hṖt)(z + h(Az +Bw))

≃ z⊤Ptz + h
(
(Az +Bw)⊤Ptz + z⊤Ṗt(Az +Bw) + z⊤Ṗtz

)
(of course, dropping h2 and higher order terms).

Adding them up, the cost incurred plus min-cost-to-go is approximately given by

z⊤Ptz + h
(
z⊤Qz + w⊤Rw + (Az +Bw)⊤Ptz + z⊤Pt(Az +Bw) + z⊤Ṗtz

)
Now, minimize over w to get (approximately) optimal w:

2hw⊤R+ 2Hz⊤PtB = 0

so that
w⋆ = −R−1B⊤Ptz

(boy does that look similar!)
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Thus optimal u is time-varying linear state feedback is given by

u⋆(t) = Ktx(t), Kt = −R−1B⊤Pt

Ok, so this gives us the optimal control in terms of Pt. But, what is Pt?

4.3 (Approximate) Hamilton-Jacobi Equation

Let’s substitute w⋆ into the (approx.) HJ equation

z⊤Ptz ≃ z⊤Ptz + h
(
zTQz + (w⋆)⊤Rw⋆ + (Az +Bw⋆)⊤Ptz + z⊤Pt(Az +Bw⋆) + z⊤Ṗtz

)
After you plug things in and simplify we get

−Ṗt = A⊤Pt + PtA− PtBR−1B⊤PtQ

which is the Riccati differential equation for the LQR problem.

We can solve it (numerically) using the final condition PT = Qf .

Summary:

step 1 solve Riccati differential equation

−Ṗt = A⊤Pt + PtA− PtBR−1B⊤PtQ, PT = Qf

backward in time

step 2 optimal u is u⋆(t) = Ktx(t), Kt = −R−1B⊤Pt

4.4 Some Additional comments

• DP method readily extends to time-varying A, B, Q, R, and tracking problem

• usually Pt rapidly converges as t decreases below T (same comment as DT)

• limit Pss satisfies (cts-time) algebraic Riccati equation (ARE)

ATP + PA− PBR−1B⊤P +Q = 0

which is a quadratic matrix equation

• Pss can be found by (numerically) integrating the Riccati differential equation, or by direct methods
(you will do this in your project)

• for t not close to horizon T , LQR optimal input is approximately a linear, constant state feedback

u(t) = Kssx(t), Kss = −R−1B⊤Pss

There is a similar co-state formulation for continuous time. Please see Lewis chapter 3 for this.

5 M4-RL5: CT LQR via Lagrange

In this Module 4 section we revisit CT LQR from a classical optimal control perspective using Lagrangians
and nonlinear programming (NLP).
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Consider the constrained NLP:

min
u

1

2

∫ T

0

x(τ)⊤Qx(τ) dτ =: J +
1

2
x(T )⊤Qfx(T )

s.t. ẋ(t) = Ax(t) +Bu(t), t ∈ [0, T ]

Introduce Lagrange multiplier (function) λ : [0, T ] → Rn and write

L = J +

∫ T

0

λ(τ)⊤(Ax(τ) +Bu(τ)− ẋ(τ)) dτ

We can compute the derivatives (recall: you need distributions or test function to actually compute the
derivatives here. . . )

• with respect to (wrt) u:

Du(t)L = Ru(t) +Bλ⊤(t) = 0 =⇒ u = −R−1B⊤λ(t)

• wrt x: use the fact that (just basic fundamental theorem of calculus)∫ T

0

λ(τ)⊤ẋ(τ) + λ̇(τ)⊤x(τ) dτ = λ(T )⊤x(T )− λ(0)⊤x(0)

Dx(t)L = Qx(t) +A⊤λ(t) + λ̇(t) = 0 =⇒ λ̇(t) = −A⊤λ(t)−Qx(t)

• wrt x(T ):
Dx(T )L = Qfx(T )− λ(T ) = 0 =⇒ λ(T ) = Qfx(T )

The above gives us optimality conditions just as in the DT case:

ẋ = Ax+Bu, x(0) = x0, λ̇ = −A⊤λ−Qx, λ(T ) = Qfx(T ), u(t) = −R−1B⊤λ(t)

5.1 Adjoint or Co-state system

Using u(t) = −R−1B⊤λ(t), we can write a system of equations (two-point boundary value problem):

d

dt

[
x(t)
λ(t)

]
=

[
A −BR−1B⊤

−Q −A⊤

]
︸ ︷︷ ︸

Hamiltonian

[
x(t)
λ(t)

]
(1)

You can argue that λ(t) = Ptx(t). That is, use the Riccati DE with final time condition PT = Qf and the
co-state equation to show that λ(t) = Ptx(t) as above is a solution to the costate equation.

5.2 Solving the Riccati DE via Hamiltonian

Consider
−Ṗ = A⊤P + PA− PBR−1B⊤P +Q

and recall (1). These two differential equations are related.

The fact that λ(t) = Ptx(t) suggests that P should have the form λ(t)x(t)−1 but of course this only makes
sense if they are scalars.

So what do we do? How do we generalize this intuition?
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Consider the matrix version of the Hamiltonian DE:

d

dt

[
X(t)
Y (t)

]
=

[
A −BR−1B⊤

−Q −A⊤

]
︸ ︷︷ ︸

Hamiltonian

[
X(t)
Y (t)

]
(2)

where X,Y ∈ Rn×n.

Then Z(t) = Y (t)X(t)−1 satisfies the Riccati DE:

−Ż = A⊤Z + ZA− ZBR−1B⊤Z +Q

Check your self using the fact that

d

dt
(F (t)G(t)) = Ḟ (t)G(t) + F (t)Ġ(t)

d

dt
(F (t)−1) = −F (t)−1Ḟ (t)F (t)−1 (we saw this earlier in the quarter in [HW1]!!)

And, the fact that

Ż =
d

dt
Y X−1 = Ẏ X−1 − Y X−1ẊX−1

= (−QX −AY )X−1 − Y X−1(AX −BR−1B⊤Y )X−1

= −Q−A⊤Z − ZA+ ZBR−1B⊤Z

Hence, we can solve the Riccati DE by solving a linear matrix (Hamiltonian) DE with final conditions
X(T ) = I, Y (T ) = Qf and forming P (t) = Y (t)X(t)−1 after.

5.3 Solving ARE via Hamiltonian

Recall the ARE (which gives you the steady state solution for the Riccati DE and also gives you the infinite
horizon LQR solution):

Q+A⊤P + PA− PBR−1B⊤P = 0

with P ⪰ 0.

Aside:
Note u⋆ = Kx = −BR−1B⊤Px and the closed loop dynamics look like

ẋ+Ax+Bu = (A+BK)x

It turns out that the closed loop system is stable when (Q,A) is observable and (A,B) is controllable (that
is, finding an LQR solution will stabilize the system if these two conditions are met).

Let the eigenvalues of the closed loop system be

λ1, . . . , λn

And with the assumptions above, Re(λi) < 0.

Now we also have that[
I 0

−P I

] [
A −BR−1B⊤

−Q −A⊤

] [
I 0
P 0

]
=

[
A+BK −BR−1B⊤

0 −(A+BK)⊤

]
(3)

where the zero comes from the ARE. Note[
I 0
P 0

]−1

=

[
I 0

−P I

]
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Now, looking at the diagonal of (3), the eigenvalues of the Hamiltonian are λ1, . . . , λn and −λ1, . . . ,−λn.
Hence, closed-loop eigenvalues are the eigenvalues of H with negative real part (under assumptions above).

You can show that if A+BK is diagonalizable, i.e.

M−1(A+BK)M = Λ = diag(λ1, . . . , λn),

then
M⊤(−A−BK)⊤M−⊤ = −Λ

so that [
M−1 0
0 M⊤

] [
A+BK −BR−1B⊤

0 −(A+BK)⊤

] [
M 0
0 M−⊤

]
=

[
Λ −M−1BR−1B⊤M−⊤

0 −Λ

]
Combine this with (3) to get

H

[
M
PM

]
=

[
M
PM

]
Λ

so that the n columns of [
M
PM

]
are the eigenvectors of H associated with the stable eigenvalues λ1, . . . , λn.

Thus, to solve the ARE, take the n stable eigenvalues (there will be n stable and n unstable ones) and finding
the eigenvectors associated with the n stables ones. Stack them up as columns in a matrix and partition
that matrix as [

v1 · · · vn
]
=

[
X
Y

]
∈ R2n×n

Then P = Y X−1 is the unique PSD solution of the ARE.
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