
AA/EE547: Wi 22

Module 3: Observability & Controllability
Lecturer: L.J. Ratliff

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications,
meaning you should take your own notes in class and review the provided references as opposed to taking
these notes as your sole resource. I provide the lecture notes to you as a courtesy; it is not required that I
do this. They may be distributed outside this class only with the permission of the Instructor.

References. Chapter 11 and 15 [JH]; Chapter 8/8d, [C&D]. Note that 8d in [C&D] is the discrete time
chapter on controllability and observability.

Contents

1 M3-RL1: Introduction to Controllability & Observability 1

2 M3-RL2: Controllability of LTV Systems 5

3 M3-RL3: Observability of LTV 13

4 M3-RL4: LTI Observability & Controllability 15

5 M3-RL5: Stabilizability and Detectability 24

6 M3: Additional Notes 32

Note 1: You can click on the links above under contents to bring you to the corresponding place in the
pdf.

Note 2: We will primarily introduce these concepts for continuous time systems, however discrete time
concepts are analogous and more detail can be found in [C&D] chapter 8d.

1 M3-RL1: Introduction to Controllability & Observability

The first component of this model seeks to introduce the basic fundamental concepts of controllability and
observability of linear systems. The concepts are ”dual” in some sense and hence we introduce them together.

1.1 Controllability and Rechability

Two important concepts in the analysis and synthesis of control inputs to linear systems are controllability
and reachability.
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Recall that if we have a linear time varying (LTV) continuous time (CT) dynamical system given by

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
(1)

then the ”flow” of the ODE or state transition map is denoted ϕ(t, t0, x0, u), and we use the short hand
ϕt(t0, x0, u) to denote the flow induced by the input u at the time t starting from initial state x(t0) = x0.
The output response map is defined as ρ(t, t0, x0, u)—in particular, the output at time t starting from initial
state x(t0) = x0 induced by u is

y(t) = ρ(t, t0, x0, u).

Let U denote the space of inputs where u ∈ U is a piecewise continuous function such that u(t) ∈ Rm.
Similarly, let X denote the ”state-space” where x ∈ X is a piecewise continuous function such that x(t) ∈ Rn.
Finally, let Y be the space of outputs where y ∈ Y is a piecewise continuous function such that y(t) ∈ Rp.
With this notation, we define a dynamical system as the tuple

D = (U ,X ,Y, ϕ, ρ).

Consider arbitrary t0, t1 satisfying t0 < t1, fixed initial condition x0 := x(t0) and an input u[t0,t1] defined on
the interval [t0, t1] as indicated by the subscript notation. We say the input u[t0,t1](·) “steers” x0 at t0 to x1

at t1 if
x1 := x(t1) = ϕ(t1, t0, x0, u[t0,t1]) ∈ Rn.

Indeed, we know that the solution ϕ of (1) is

x1 = x(t1) = Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ,

where Φ(·, ·) denotes the system’s state transition matrix.

Notation. Here let’s take a little break to make sure notation is clear. First, elements in the spaces X ,
U or Y are mappings from R+ to Rn, Rm, or Rp, respectively. That is, x ∈ X is a mapping such that

x : t ∈ R+ 7→ x(t) ∈ Rn.

Elements in the spaces U and Y are defined similarly.

Controllability describes the condition under which inputs exist such that the system state can transferred
from an arbitrary position in the state space to any other arbitrary position in the state space. The following
is the definition of controllability.

Definition 1 (Controllable). The system representation D is controllable on [t0, t1] if for all (x0, x1) ∈ Rn,
there exists u[t0,t1] ∈ U which steers x0 at t0 to x1 at t1.

We tend to break controllability into two different concepts:

• Controllability from the origin (reachability):

• Controllability to the origin (often simply referred to as contorllability, hence, one should take care to
identify the precise definition in the given reference they are looking at).

We will provide more detail on these two concepts in the next section (M3-RL2).

The following proposition connects the controllability definition to surjectivity of the map ϕ(t1, t0, x0, ·).

Warning! Review your [510] notes on surjectivity and injectivity of linear maps! These concepts will be
used throughout this model and it is assumed you are familiar with them and the Finite Rank Operator
Lemma (cf. [510] lecture notes linked here or Appendix A of [C&D]). The Finite Rank Operator Lemma

https://faculty.washington.edu/ratliffl/teaching/2020_MathematicalFoundations.pdf
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is referred to as the “Fundamental Theorem of Linear Equations” in [JH] and can be found in chapter
11 of that text, specifically Theorem 11.1.

Proposition 2. The dynamical system D is controllable on [t0, t1] ⇐⇒ for all x0 ∈ Rn, the map

ϕ(t1, t0, x0, ·) : u[t0,t1] 7→ x(t)

is surjective, that is it maps U[t0,t1] onto X , where U[t0,t1] denotes the subspace of inputs defined on the
interval [t0, t1].

[510] Reminder: A function f : X → Y is surjective (onto) if and only if

∀y ∈ Y, ∃x ∈ X, such that y = f(x).

1.1.1 Memoryless Feedback and Controllability

An important type of control input is feedback control. This is where either a mapping of the state or
output is used as the control input. For example, in your undergrad control class you may have seen a PID
(proportional-integral-derivative) control loop where the control input is designed to have a combination of
a proportional, integral and derivative mapping of the output y(t).

Recall that we say a mapping is memoryless if the output it produces at a given time is dependent only on
the input at that same time. Consider two memoryless maps

Fs :X → U (memoryless state feedback)

Fo :Y → U (memoryless output feedback)

Applying Fs and Fo to our dynamical system D = (U ,X ,Y, ϕ, ρ), we get resulting systems Ds and Do,
respectively, which are depicted in Figures 1a and 1b, respectively.

v D y

Fs(·)

+ u

x

−

(a)

v D y

Fo(·)

+ u

−

(b)

Figure 1: (a) System Ds with memoryless state feedback; (b) System Do with memoryless state feedback.

From the above figures, we deduce
u(t) = v(t)− Fs(x(t)) ∀ t,

and
u(t) = v(t)− Fo(y(t)) ∀ t.

Assumption. (well-posedness) For Ds and Do, assume that for all (x0, t0), for all exogenous inputs v(·)
there is one and only one state response x(·) and one output response y(·).

Example (of a system violating well-posedness). Consider A = 0, B = 0, C = 0, and D = 1—i.e., a
single-input-single-output (SISO) linear system. Consider u = v + y. The closed loop system is ill-posed
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since y = u− v and y = u simultaneously. Roughly speaking, well-posedness calls for some delay around
the feedback loop.

The following theorem states that controllability is preserved under memoryless state and output feedback.

Theorem 3. Let Ds,Do be well-posed. Then

D is controllable on [t0, t1]

⇐⇒ Ds is controllable on [t0, t1] (1)

⇐⇒ Do is controllable on [t0, t1] (2)

To reiterate in a slightly different way, this theorem states that (potentially, nonlinear) memoryless state-
feedback and output-feedback do not affect controllability.

Proof of Theorem 3. We provide the proof for the first equivalence, and leave the second one for the reader
to show. It follows from the same style argument.

(=⇒) By assumption D is controllable on [t0, t1]. Consider arbitrary (x0, t0) and (x1, t1). Since D is
controllable on [t0, t1], ∃ũ[t0,t1](·) steering x0 at t0 to x1 at t1 (cf. Definition 1). The state space of D is
identical to Ds since Fs is memoryless. Apply to Ds the exogenous input defined by

ṽ(t) = ũ(t) + Fs(x(t))

= ũ(t) + Fs(ϕ(t, t0, x0, ũ[t0,t]))

Then ṽ(t) steers x0 at t0 to x1 at t1 by the well-posedness assumption.

(⇐=) By controllability of Ds, for all x0, x1 ∈ X , ∃ ṽ[t0,t1] that steers (x0, t0) to (x1, t1) on Ds. Since D and
Ds have the same state space, by the well-posedness assumption, ṽ will produce a unique input ũ of D which
steers x0 at t0 to x1 at t1.

Key Take-Away. Roughly speaking, nonlinear memoryless state-feedback and output-feedback do not
affect controllability. The memeoryless assumption is crucial since it allows for us to use the same state
space for D,Ds,Do.

1.2 Observability

The second concept we introduce is observability. This concept characterizes under what conditions we can
”observe” the state of a dynamical system given the output map ρ.

Definition 4 (Observable). The dynamical system D is called observable on [t0, t1] if and only if, given,
D, for all inputs u[t0,t1] and for all corresponding outputs y[t0,t1] ∈ Y the state x0 at time t0 is uniquely
determined.

Of course, once x0 is calculated, from u[t0,t1] and the state transition map ϕ we can calculate the state
trajectory x(·); indeed,

x(t) = ϕ(t, t0, x0, u[t0,t1]), ∀ t ∈ [t0, t1].

Hence, we concern ourselves with observability of the initial state x0. Analogous to the connection be-
tween controllability and surjectivity of the state transition map (flow) ϕ, observability and injectivity are
fundamentally connected.
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Proposition 5. The dynamical system D is observable on [t0, t1] ⇐⇒ for each fixed u[t0,t1] the partial
response map

x0 7→ y[t0,t1] = ρ(·, t0, x0, u[t0,t1])

is injective, that is the partial response map is a one to one map from X to Y.

[510] Reminder: A function f : X → Y is injective (one-to-one) if and only if

[f(x1) = f(x2) =⇒ x1 = x2] ⇐⇒ [x1 ̸= x2 =⇒ f(x1) ̸= f(x2)].

1.2.1 Memoryless Feedback and Feedforward, and observability

As with controllability, it is important to understand when observability is preserved under different types of
common control input designs. We gave an example of feedback control in the preceding subsection. Another
important type of control input design is known as ”feedforward” control. This is where a function of the
input is summed up with the output of the dynamical system D in order to produce some effect y(t).

For a given dynamical system D, consider the map Fo : Y → U and the map Ff : U → Y where we use Fo to
apply to D a memoryless output feedback and Ff to apply to D a memoryless feedforward control. Call
the resulting system Do and Df , resp. (see Figs. 2a and 2b).

v D y

Fo(·)

+ u

−

(a)

v D η = y + Ff (u)

Ff (·)

+

+

y

(b)

Figure 2: (a) System Do with memoryless output feedback; (b) System Df with memoryless feedforward.

The following theorem states that observabilility is preserved under feedforward and output feedback control.

Theorem 6. For the system Df and the system Do satisfying Assumption 1.1.1, we have

D is observable on [t0, t1]

⇐⇒ Do is observable on [t0, t1] (1)

⇐⇒ Df is observable on [t0, t1] (2)

The proof of the above theorem is omitted but it is analogous to the proof of Theorem 3.

Remark. Memoryless state feedback may affect observability. For example, for a linear time-invariant
system representation R = [A,B,C,D], there may exist a linear state feedback Fs such that for some
states x0 and for some inputs u(·), the state trajectory remains in the nullspace of C for all t. Try and
construct such a system.

2 M3-RL2: Controllability of LTV Systems

Reference: [C&D] 8.2–8.4; [JH] Chapter 11, 15
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Consider a LTV system

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)

We have seen (in Module 1) that for an input u(t) defined on the interval [t0, t], the solution is given by

x(t) = ϕ(t, t0, x0, u[t0,t]) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ

We will leverage the structure of this solution in our analysis and characterization of controllability and
observability. Towards that end, we need a little reminder of linear algebra ([510]) concepts including the
finite rank operator lemma and the notion of a Grammian.

2.1 A Brief Review of the Finite Rank Operator Lemma

We can characterize the controllability and observability in terms of particular linear operators.1

This is where the Finite Rank Operator (FRO) Lemma and adjoint map definition will play a role. The
FRO lemma is one of my favorite concepts in linear algebra by far! For more detail you can check out the
following references:

• [510] lecture notes (linked here) §2.5
• [C&D] Appendix A.7.4

• [JH], Chapter 11 (§11.3 specifically)

Let’s have a brief review of [510] concepts. Consider a linear operator A : H → Fm which maps a Hilbert
space and anm–dimensional Hilbert space space Fm defined by (Fm, F, ⟨·, ·⟩Fm) where F is either R or C and
⟨·, ·⟩Fm is the inner product associated to Fm. Recall that a Hilbert space is a vector space equipped with an
inner product operation that enables defining a distance function and perpendicularity (aka orthogonality).

Examples (Hilbert Spaces).
1. The Euclidean vector space R3 equipped with the usual dot product ⟨x, y⟩ = x⊤y where x, y ∈ R3

is a Hilbert space.

2. The space of ℓ2–sequences equipped with the ℓ2 inner product. A sequence {xn} is said to belong
to ℓ2 if

∞∑
n=1

|xn|2 < ∞.

The ℓ2 inner product is

⟨x, y⟩ =
∞∑

n=1

xnȳn.

3. The space L2(X,µ) of complex-valued measurable functions on X for which the following holds:∫
X

|f |2dµ < ∞.

The inner product on this space is

⟨f, g⟩ =
∫
X

f(t)g(t) dµ(t)

A simple example of this is L2(R) with the usual Lebesgue measure µ.

1Context: The study of linear dynamical systems both in the time and frequency domain reduces to linear algebra in the
majority of cases. This is why we put so much emphasis on students having a strong background in linear algebra and hence,
the requirement of taking [510] which is designed to catch students up if they missed this background as an undergraduate.

https://faculty.washington.edu/ratliffl/teaching/2020_MathematicalFoundations.pdf
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The first two examples are finite dimensional while the third is infinite dimensional. In fact, in this class we
need the infinite dimensional variant since our inputs, outputs, and states are functions and we will see that
the Grammian operators we use to characterize observability and controllability are thus functionals defined
on infinite dimensional Hilbert spaces.

The FRO Lemma tells us that for a map linear map A : U → V, the following decompositions hold:

V = Im(A)
⊥
⊕ Ker(A∗)

and

U = Im(A∗)
⊥
⊕ Ker(A)

where Im(A) is the range space of A (or image) and Ker(A) is the null space of A (or kernel). The notation
⊥
⊕ denotes the orthogonal direct sum. The illustration in Figure 3 summarizes this decomposition.

Moreover, we have that

Ker(AA∗) = Ker(A∗), Im(AA∗) = Im(A)

Ker(A∗A) = Ker(A), Im(A∗A) = Im(A∗)

and
AA∗|Im(A) → Im(A) and A∗A|Im(A∗) → Im(A∗) are one-to-one and onto.

0H 0m

Ker(A)

Im(A∗)

Ker(A∗)

Im(A)

H Fm

A

A∗

Figure 3: The orthogonal decomposition of the domain and the co-domain of a finite rank operator A : H →
Fm and its associated bijections.

2.2 Controllability and Reachability of LTV

We will use the FRO lemma to aid in constructing controllability and observability grammians which are
maps that can be used to characterize not only controllability and observability for a dynamical system, but
can be used to construct the controllable (and reachable) and observable subspaces.

Consider the dynamical system

ẋ = A(t)x+B(t)u

y = C(t)x

}
(D)

where for simplicity, we take D ≡ 0. We use (A(·), B(·)) as short hand for identifying the dynamical system
when referring to controllability and (A(·), C(·)) as short hand when referring to observabiltiiy. The reason
for this is that we will see that these respective components of D are all that are need to characterize the
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corresponding concepts. In fact, we often simply say the pair (A(·), B(·)) (resp. (A(·), C(·))) is controllable
(resp. observable).

Recall from Definition 1 that the dynamical system D (and hence the pair (A(·), B(·))) is controllable on
[t0, t1] if and only if ∀(x0, t0) and ∀(x1, t1), there exists u(·) that steers (x0, t0) to (x1, t1)—i.e., x1 := x(t1) =
ϕ(t1, t0, x0, u).

We have the following definitions for controllable to zero and controllable from zero (reachable).

Definition 7. Consider the pair (A(·), B(·)).

1. The state x0 is controllable to zero on [t0, t1] if and only if there exists u[t0,t1] that steers (x0, t0) to
(0, t1).

2. The state x1 is reachable on [t0, t1] if and only if there exists u[t0,t1] that steers (0, t0) to (x1, t1).

Given the above definitions of different types of controllability, it is of interest to characterize the subspaces
of X (and in particular Rn) that are controllable (to zero) and reachable (controllable from the origin). We
do this in particular when the entire state space is not controllable or reachable.

In fact the area of research on reachability is massive. Its highly important for understanding important
concepts such as safety; e.g., in the communities studying hybrid systems or reinforcement learning in
settings with unknown constraints and rewards across the state-action space. For the final project in this
course, this is an area worth considering. There is lots of potential for it to roll over into research output.

Writing out x(t1) using the above expression for the solution, we can define the so-called reachbility map
Lr,[t0,t1] : PC([t0, t1]) → Cn:

x1 := x(t1) = ϕ(t1, t0, x0, u[t0,t1]) = Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ

= Φ(t1, t0)x0 + Lru

where Lr,[t0,t1] is defined by

Lr,[t0,t1](u(·)) =
∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ

Note we will drop the dependence on [t0, t1] when clear from context.

The expression for x1 shows that there will be an input u[t0,t1] that transfers an arbitrary (x0, t0) to an
arbitrary (x1, t1) if and only if the map Lr,[t0,t1] : PC([t0, t1]) → Cn is surjective (cf Proposition 2).

Proposition 8. The following equivalence holds:

(A(·), B(·)) is controllable on [t0, t1] ⇐⇒ Lr,[t0,t1](u(·)) is surjective.

The map Lr,[t0,t1] determines the set of states that can be reached from the origin at some time t = t1. In
short, the study of the range of Lr is central to the study of controllability/reachability. Here, we will drop
the subscript [t0, t1] on the map Lr when clear from context to reduce clutter.

Definition 9 (Reachable Subspace). Given the pair (A(·), B(·)), space of reachable states on the time
interval [t0, t1] is the image (or equivalently, the range) of the operator Lr,[t0,t1]. More specifically, given two
times t1 > t0 ≥ 0, the reachable (or controllable from the origin) subspace ℑ(Lr) consists of all states x1 for
which there exists an input u : [t0, t1] → Cm that transfers the state from x(t0) = 0 to x(t1) = x1—i.e.,

Im(Lr) =

{
x1 ∈ Cn : ∃u(·), x1 =

∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ

}
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Sometimes we do not want to specify t1 in which case we say that the pair (A(·), B(·)) is controllable
(reachable) at to if and only if for some t1 > t0, the pair is controllable (reachable) on [t0, t1].

Given that the state transition matrix Φ(t, t0) is non-singular for all (t, t0) (cf. Module 1), it is easy to prove
the following result.

Theorem 10. The pair (A(·), B(·)) is completely controllable (CC) on [t0, t1]

⇐⇒ ∀ x0 ∈ Rn, ∃u[t0,t1] that steers (x0, t0) to (0, t1) (steering to origin)

⇐⇒ ∀x1 ∈ Rn, ∃u[t0,t1] that steers (0, t0) to (x1, t1) (reaching from origin)

Proof. Consider the interval [t0, t1], and throughout we will use Lr for Lr,[t0,t1] for short hand. We have that

x1 = Φ(t1, t0)x0 + Lru

Since x0 can be zero and x1 arbitrary, a necessary condition for CC is that Im(Lr) = Cn. But this is sufficient
too because if Im(Lr) = Cn, given x1 at t1 and x0 at t0, ∃ u[t0,t1] such that

x1 − Φ(t1, t0)x0 = Lru

Both implications follow.

2.3 Controllability in Terms of Reachability

Towards defining the analogous controllability map Lc, we will review the computation of an adjoint (in
particular, the adjoint of Lr), and then use it to construct the reachability grammian.

2.3.1 Computing the Adjoint of the Reachability Map

Recall that the reachability map Lr : U[t0,t1] → Rn is defined by

Lr(u(t1)) =

∫ t1

t0

Φ(t, τ)B(τ)u(τ) dτ ∈ Rn.

Observe that Lr operates on the function space of inputs, which is infinite dimensional.

Claim 1. The adjoint of Lr is
L∗
rx = B∗(·)Φ∗(t1, ·)x

Proof. Since

Lr : u[t0,t1] 7→
∫ t1

t0

Φ(t1, τ)B(τ)u(τ)dτ ∈ Rn

we have that
⟨Lru, z⟩Rn = ⟨u,L∗

rz⟩U[t0,t1]

where the inner product on the right hand side of the equality is the one associated to the Hilbert space
U[t0,t1]. Let z

∗ denote the complex conjugate of the vector z. Then, the left hand side satisfies

⟨Lru, z⟩Rn = z∗
∫ t1

t0

Φ(t1, τ)B(τ)u(τ)dτ =

∫ t1

t0

(B∗(τ)Φ∗(t1, τ)z)
∗u(τ)dτ = ⟨u,B∗(τ)Φ∗(t1, τ)z⟩U[t0,t1]

so that
L∗
rz = B∗(·)Φ∗(t1, ·)z

as claimed.



Module 3: Observability & Controllability 10

2.3.2 Reachability Grammian and Connections to Controllability

Given the construction of L∗
r , we can construct the map LrL∗

r : Rn → Rn. Indeed, we have that

LrL∗
r =

∫ t1

t0

Φ(t1, τ)B(τ)B∗(τ)Φ∗(t1, τ) dτ

This is a linear map from Rn to Rn and hence has a matrix representation (cf. [510] notes).

Definition 11 (Reachability Gramian.). The reachability Gramian is given by the symmetric positive semi-
definite matrix

Wr,[t0,t1] =

∫ t1

t0

Φ(t1, τ)B(τ)B∗(τ)Φ(t1, τ) dτ ∈ Rn×n

Note that by definition, Wr,[t0,t1] is the integral of a semi-definite Hermitian matrix so that

z∗Wt(t0, t1)z ≥ 0 ∀ z ∈ Cn

It turns out that t1 7→ Wr,[t0,t1] solves a particular matrix differential equation—namely,

Ẋ(t) = A(t)X(t) +X(t)A∗(t) +B(t)B(t)∗, X(t0) = 0 (2)

Practice Problem. Show that t1 7→ Wt(t0, t1) solves the linear matrix differential equation (2).

Notice that critical points of the matrix differential equation (2) satisfy

A(t)X(t) +X(t)A∗(t) +B(t)B(t)∗ = 0

And when the system is an LTI system (i.e., A(t) ≡ A and B(t) ≡ B), this becomes a Lyapunov equation:

AX +XA∗ +BB∗ = 0

In the next section, we will see more formally the connection between controllability (and observability)
grammians for LTI systems and Lypunov equations.

We can characterize (complete) controllability in terms of the reachability map and its grammian.

Theorem 12 (Controllability in terms of Reachability). Let (A(·), B(·)) be given and be piecewise contin-
uous. Then,

(A(·), B(·)) controllable on [t0, t1] ⇐⇒ Im(Lr) = Cn (3)

⇐⇒ Im(LrL∗
r) = Cn (4)

⇐⇒ det(Wr,[t0,t1]) ̸= 0 (5)

Further, the set of reachable states on [t0, t1] is the subspace Im(Lr) which is equal to Im(Wr,[t0,t1]).

Proof. To show the equivalence in (1), note that the left-hand side is equivalent to Lr being surjective which
is by definition equivalent to Im(Lr) = Cn.

To show the equivalence between (1) and (2), note that this is simply Finite Rank Operator (FRO) Lemma
applied to A = Lr viewed as a map from the Hilbert space Lm

2 ([t0, t1]) into Cn.2

To show that (2) is equivalent to (3), note that LrL∗
r : Cn → Cn, LrL∗

r is surjective if and only if it is a
bijection (both injective and surjective) so using its matrix representation,

Wr,[t0,t1] =

∫ t1

t0

Φ(t1, τ)B(τ)B(τ)∗Φ(t1, τ)
∗ dτ,

2Note that I expect you to be able to argue this without invoking FRO Lemma. That is, you should be able to construct an
argument using facts about the image and kernel of the operator Lr and its adjoint L∗

r .
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we get that (2) is equivalent to (3).

The fact that the set of reachable states on [t0, t1] is the subspace Im(Lr) follows directly from the expression
for x1 = ϕ(t1, t0, x0, u) with x0 = 0.

Remark. The essence of the reduction theorem above is that, for linear system representations,
controllability on [t0, t1], controllability to zero on [t0, t1] of all states, and reachability on [t0, t1] of all
states are equivalent. The reader should construct a one-dimensional nonlinear example to show that this
is not so for nonlinear systems.

The equivalence between controllability and reachability as described in Theorem 12 let’s us define an
ostensibly equivalent controllability map:

Lc : u[t0,t1] 7→
∫ t1

t0

Φ(t0, τ)B(τ)u(τ) dτ

This map is derived in a similar way as the reachability map. Indeed, we say (A(·), B(·)) is controllable to
zero if there exists an input u[t0,t1] that steers (x0, t0) to (0, t1). Writing out the solution at t1 we have that

0 = Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ

Hence, we have

−Φ(t1, t0)x0 =

∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ

⇐⇒ −x0 = Φ(t1, t0)
−1

∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ

=

∫ t1

t0

Φ(t0, τ)B(τ)u(τ) dτ

=: Lcu

Moreover, we can redefine the control input so that

0 = Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ ⇐⇒ x0 =

∫ t1

t0

Φ(t0, τ)B(τ)v(τ) dτ, u(·) = −v(·)

Fact 13. The following equivalence holds:

Lc is surjective ⇐⇒ ∃ u[t0,t1] that steers arbitrary (x0, t0) to arbitrary (x1, t1).

Note that
Im(Lr) = Φ(t1, t0) Im(Lc)

Indeed, let x ∈ Lr then

x = Lru =

∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ

But, Φ(t1, t0)Φ(t0, τ) = Φ(t1, τ) so that

x = Lru = Φ(t1, t0)

∫ t1

t0

Φ(t0, τ)B(τ)u(τ) dτ
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Definition 14 (Controllable Subspace). Given two times t1 > t0 ≥ 0, the controllable subspace Im(Lc)
consists of all states x0 for which there exists an input u : [t0, t1] → Cm that transfers the state from
x(t0) = x0 to x(t1) = 0—i.e.,

Im(Lc) = {x0 ∈ Cn : ∃u(·), 0 = Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ}

This in turn gives us an analogous theorem to the reachability theorem above.

Theorem 15. Let (A(·), B(·)) be given and be piecewise continuous. Then,

(A(·), B(·)) controllable on [t0, t1] ⇐⇒ Im(Lc) = Cn (6)

⇐⇒ Im(LcL∗
c) = Cn (7)

⇐⇒ det(Wc,[t0,t1]) ̸= 0 (8)

where Wc is the reachability grammian

Wc,[t0,t1] =

∫ t1

t0

Φ(t0, τ)B(τ)B(τ)∗Φ(t0, τ)
∗ dτ

Further, the set of reachable states on [t0, t1] is the subspace Im(Lc) which is equal to Im(Wc,[t0,t1]).

Practice Problem. Show that given t1 > t0,

Im(Lr) = Φ(t1, t0) Im(Lc)

and derive a matrix differential equation that t1 7→ Wc,[t0,t1] solves.

2.4 M3-RL2-a: Finding the Minimum Cost Control

One interesting application is to the problem of finding the minimum cost control. Consider the cost of
control to be the given by the L2-norm of u(·):

⟨u, u⟩ =
∫ t1

t0

u(t)∗u(t) dt = ∥u∥22

Then if (A(·), B(·)) is controllable on [t0, t1], then for all x0, x1 ∈ Cn, the input ũ : [t0, t1] → Cm defined by

ũ(t) = B(t)∗Φ(t1, t)
∗W−1

r,[t0,t1]
(x1 − Φ(t1, t0)x0)

steers (x0, t0) to (x1, t1). Note this is one such control that gets the job done. There are potentially infinitely
many others, since controllability is about ’surjectivity’ of a particular linear map.

To better understand this, the condition

x1 = ϕ(t1, t0, x0, u) = Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ

imposes n independent constraints on an infinitely dimensional space (i.e., the space where u(·) lies is an
infinite dimensional space).

What this implies is that the set of controls that satisfy the above “constraint” forms a linear variety (or
affine subspace) of codimension n. Indeed, any u = ũ+ v with v ∈ Ker(Lr) also gets the job done.

Further, geometrically, ũ is the least-cost L2-solution iff ∥ũ∥2 is the minimum distance between the origin
and the linear variety ũ + Ker(Lr). Recall from last quarter that this means that ũ is the least cost L2

solution iff ũ is orthogonal to the variety ũ+Ker(Lr) which is, in turn, equivalent to ũ ⊥ Ker(Lr).
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Now, we get to use our friend FRO Lemma once again! By FRO Lemma, this means that

ũ is the least cost solution ⇐⇒ ũ ∈ Im(L∗
r) ⇐⇒ ũ = L∗

rξ, ξ ∈ Cn.

And, the minimal cost for reaching (x1, t1) from (0, t0) is given by

∥u∥22 = x∗
1W

−1
r,[t0,t1]

x1

This can easily be checked by the following reasoning:

u[t0,t1] transfers (x0, t0) to (x1, t1) ⇐⇒ x1 − Φ(t1, t0)x0 = Lru

Since ũ = L∗
rξ, we have that

ξ = (LrL∗
r)

−1(x1 − Φ(t1, t0)x0) =⇒ ũ = L∗
rξ = L∗

r(LrL∗
r)

−1(x1 − Φ(t1, t0)x0)

Recall again from [510], that for diagonalizable positive semi-definite (PSD) Hermitian (symmetric) matrices,
one can select an orthonormal eigenbasis. Hence, since Wr,[t0,t1] is a PSD Hermitian matrix, we can expand
it as

Wr,[t0,t1] =

n∑
i=1

λiviv
∗
i

where (λi, vi) are eigenpairs for Wr and the vi are orthonormal. Recall that

⟨u, u⟩ =
∫ t1

t0

u(t)∗u(t) dt = ∥u∥22

(L2 norm), so that for a unit cost ∥u∥2 = 1, we can reach any of the points v1/
√
λi, i = 1, . . . , n. Moreover,

from (0, t0) we can reach any point on the ellipsoid whose semixes are vi/
√
λi. Hence, if we order the

eigevalues
λ1 ≥ λ2 ≥ · · · ≥ λn > 0

then the direction vn is the most expensive to reach and the direction v1 is the cheapest, so that the
eigenvalues of Wr measure the effectiveness of the actuators in the task of reaching states. Furthermore,
thinking along these lines was the origin for reachability computation in linear systems theory.

3 M3-RL3: Observability of LTV

The observability map is constructed in a completely analogous manner to the controllability (rechability
maps), hence we will spend less time focusing on the details.

Consider a linear time varying system defined by

ẋ = A(t)x+B(t)u

y = C(t)x

}
(D)

Recall that

y(t1) = ρ(t1, t0, x0, u[t0,t1]) = C(t1)Φ(t1, t0)x0 +

∫ t1

t0

C(t1)Φ(t1, τ)B(τ)u(τ) dτ

Let Lo : Rn → Y[t0,t1] be defined by
Lox0 = C(·)Φ(·, t0)x0

(that is, Lox0 is an operator in PC([t0, t1])) such that

(Lox0)(t) = y(t)−
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ) dτ
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Definition 16. The state x0 is unobservable on [t0, t1] if and only if its zero input response is zero on [t0, t1].

Hence, we have the equivalence

x0 is unobservable on [t0, t1] ⇐⇒ x0 ∈ Ker(Lo)

Theorem 17. Given (A(·), C(·)) (piecewise continuous on R+), the following are equivalent:

(A(·), C(·)) is completely observable (CO) on [t0, t1] ⇐⇒ Ker(Lo) = {0}
⇐⇒ Ker(L∗

oLo) = {0}
⇐⇒ det(Wo,[t0,t1]) ̸= 0

where

Wo,[t0,t1] =

∫ t1

t0

Φ(τ, t0)
∗C(τ)∗C(τ)Φ(τ, t0) dτ

Lo

L∗
o

Cn Y[t0,t1]

Figure 4: Graphic of Observability Map Operation

The proof of this result follows directly from the definitions of the observability map and FRO Lemma. Note:
you should know how to argue the results of FRO Lemma in the context of the observability map.

Analogous to the results we had for controllability, a consequence of the above theorem is the following.

Corollary 18. Suppose that (A(·), C(·)) is observable on [t0, t1]. Then we have the following results:

a. Let y be the zero-input response due to x0 so that

⟨y, y⟩ = x∗
0Wo,[t0,t1]x0

b. Given y[t0,t1], x0 is restricted by

x0 = (L∗
oLo)

−1L∗
oy = W−1

o,[t0,t1]

∫ t1

t0

Φ(τ, t0)
∗C(τ)∗y(τ) dτ

And as in the case of the controllability map, we can characterize observability in terms of the eigenstructure
of Wo. Indeed, let λn > 0 be the smallest eigenvalue of the positive definite Hermitian matrix Wo,[t0,t1] and
en its corresponding normalized eigenvector. Then for x0 = en, ∥x0∥2 = 1 and its zero-input response is
such that ⟨y, y⟩ = λn. So, if λn ≪ 1, some states are barely observable in case of noisy observations.

Practice Problem. Show that t0 7→ Wo,[t0,t1] is the solution to the linear matrix differential equation

Ẋ(t) = −A(t)∗X(t)−X(t)A(t)− C(t)∗C(t), X(t1) = 0

Example 19. Consider two systems connected in parallel.
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+ y

(A1, B1, C1)

(A2, B2, C2)

u

y1 = C1x1

y2 = C2x2

The overall system has state-space model

ẋ =

[
A1 0
0 A2

]
x+

[
B1

B2

]
u, y =

[
C1 C2

]
x

The output is

y(t) = C1e
A1tx1(0) + C2e

A2tx2(t) +

∫ t

0

(C1e
A1(t−τ)B1 + C2e

A2(t−τ)B2)u(τ) dτ

When A = A1 = A2 and C1 = C2 = C, this reduces to

y(t) = CeAt(x1(0) + x2(0)) +

∫ t

0

CeA(t−τ)(B1 +B2)u(τ) dτ

This example demonstrates that simply knowing the input and output of the system, we cannot necessarily
distinguish between initial states for which x1(0) + x2(0) is the same value.

Theorem 20. Given t1, t0 with t1 > t0 ≥ 0, the unobservable subspace is such that

UO(t0, t1) = Ker(Wo,[t0,t1])

Proof. For every x0 ∈ Rn, we have that

x⊤
0 Wo,[t0,t1]x0 =

∫ t1

t0

x⊤
0 Φ(τ, t0)

⊤C(τ)⊤C(τ)Φ(τ, t0)x0 dτ =

∫ t1

t0

∥C(τ)Φ(τ, t0)x0∥2 dτ

so that
x0 ∈ Ker(Wo,[t0,t1]) =⇒ C(τ)Φ(τ, t)x0 = 0, ∀τ ∈ [t0, t1] =⇒ x0 ∈ UO(t0, t1)

On the other hand,

x0 ∈ UO(t0, t1) =⇒ C(τ)Φ(τ, t0)x0 = 0, ∀τ ∈ [t0, t1] =⇒ x0 ∈ Ker(Wo,[t0,t1])

where we have used the fact that
x⊤Wx = 0 =⇒ Wx = 0

for W PSD.

Remark. The key to giving constructive tests for controllability and observability is to give conditions
under which Im(Lc) = Rn and Ker(Lo) = {0}.

4 M3-RL4: LTI Observability & Controllability

The goal today is to reduce the more complicated and abstract conditions for controllability/observability
of LTV systems to the LTI case, and generate several tests for controllability and observability.
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4.1 The Basics for Controllability and Observability of LTI Systems

Consider an LTI system defined by

ẋ = Ax+Bu

y = Cx+Du

with x ∈ Rn.

Recall from the previous lectures in this module, that the reachability grammian is given by

Wr,[t0,t1] =

∫ t1

t0

Φ(t1, τ)B(τ)B∗(τ)Φ∗(t1, τ) dτ

Hence, we have in the time invariant case

Wr =

∫ t1

t0

eA(t1−τ)BB∗eA
∗(t1−τ) dτ

=

∫ t1−t0

0

eAtBB∗eA
∗t dt

where we drop the index [t0, t1] for simplicity. Similarly, the controllability grammian reduces to

Wc =

∫ t1−t0

0

e−AtBB∗e−A∗t dt

The so-called controllability matrix is given by

C =
[
B AB A2B · · · An−1B

]
∈ Cn×nm

This is a consequence of the following claim.

Claim 2. The following equality holds:
Im(Wr) = Im(C)

Proof. Consider x1 ∈ Im(Wr) and recall that 1) Wr = LrL∗
r and 2) Im(Lr) = Im(LrL∗

r) (by FRO Lemma).
Hence, there exists an input u that transfers x0 = 0 to x1 so that

x1 =

∫ t1

t0

eA(t1−τ)Bu(τ) dτ

By Cayley-Hamilton (cf. [510]), we can write

eAt =

n−1∑
i=0

αi(t)A
i, ∀t ∈ R

Thus, we have that

x1 =

n−1∑
i=0

AiB

(∫ t1

t0

αi(t1 − τ)u(τ) dτ

)
= C


∫ t1
t0

α0(t1 − τ)u(τ) dτ
...∫ t1

t0
αn−1(t1 − τ)u(τ) dτ


so that x1 ∈ Im(C).

On the other hand, suppose that x1 ∈ Im(C) so that ∃v ∈ Rmn for which x1 = Cv. From FRO Lemma, we
deduce

Im(Wr) = Ker(Wr)
⊥
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Hence, pick an arbitrary vector η1 ∈ Ker(Wr) so that

η⊤1 e
A(t1−τ)B = 0, ∀τ ∈ [t0, t1]

Indeed, this is easy to see by the fact that since η1 ∈ Ker(Wr),

η⊤1 Wrη1 =

∫ t1

t0

η⊤1 e
A(t1−τ)BB⊤eA

⊤(t1−τ)η1dτ =

∫ t1

t0

∥B⊤eA
⊤(t1−τ)η1∥2 dτ = 0

so that

0 =

∫ t1

t0

u(τ)⊤B⊤eA
⊤(t1−τ)η1dτ

and, in turn, this implies that

B⊤eA
⊤(t1−τ)η1 = 0

Taking k time derivatives with respect to τ , we further conclude that

(−1)kη⊤1 A
keA(t1−τ)B = 0, ∀τ ∈ [t0, t1], k ≥ 0

and in particular for τ = t1, we obtain
η⊤1 A

kB = 0, ∀k ≥ 0

It follows that η⊤1 C = 0 so that
η⊤1 x1 = η⊤1 Cv = 0, ∀η ∈ Ker(Wr)

This completes the proof of the claim.

Analogously, the observability matrix is given by

O =


C
CA
...

CAn−1

 ∈ Cnp×n

4.2 Controllability Tests for LTI

We can derive “tests” based on these two matrices in order to check observability and controllability prop-
erties of the above LTI system. In the following theorem ∆ = t1 − t0 for some t1 > t0.

Theorem 21. The following are equivalent:

The LTI system is completely controllable on some [0,∆] (1)

⇐⇒ rank
([
B AB · · · An−1B

])
= n (2)

⇐⇒ rank
([
sI −A B

])
= n, ∀ s ∈ C (3)

Proof. [(1)=⇒ (2)]. We know that if a system is completely controllable then the Gramian Wr is positive
definite—indeed, by its construction its positive semi-definite and if it were to actually be zero at for some
vector x (i.e. xTWrx = 0) then this means it drops rank which can be true if rank(Wr) = n:

Wr[t0, t1] =

∫ t1

t0

eA(t1−τ)BB∗eA
∗(t1−τ) dτ

=

∫ t1−t0

0

eAτBB∗eA
∗τ dτ

=

∫ ∆

0

eAτBB∗eA
∗τ dτ > 0
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Now, suppose (2) is false. That is, ∃ v ∈ Rn such that

v⊤
[
B AB · · · An−1B

]
= 0⊤nm

=⇒ v⊤B = 0⊤m, vTAB = 0⊤m, . . . , v⊤An−1B = 0⊤m

=⇒ v⊤f(A)B = 0⊤m (by Cayley Hamilton)

=⇒ v⊤eAtB = 0⊤m.

Hence
v⊤Wrv = 0

which contradicts the positive definiteness of Wr.
Aside: Can you think of an alternative proof—e.g., by contrapositive?

[(2) =⇒ (1)]. Assume (2) and suppose that (1) is false. Then ∃ v ̸= 0 such that

vT

(∫ ∆

0

eAτBB∗eA
∗τ dτ

)
v = 0 =⇒

∫ ∆

0

∥B∗eA
∗τv∥2 dτ = 0

=⇒ B∗eA
∗τv ≡ 0, ∀ τ ∈ (0,∆)

That is, taking derivatives, the following equalities hold:

B∗v = 0, at t = 0

B∗A∗v = 0, derivative at t = 0

...
...

B∗(An−1)∗v = 0, n− 1–th derivative at t = 0

Thus, we have that
v⊤
[
B AB · · · An−1B

]
= 0⊤nm

which contradicts (2).

[(2) =⇒ (3)]. Suppose (2) holds and that (3) is false. Then, ∃ λ ∈ σ(A) such that

v⊤
[
λI −A B

]
= 0⊤n+m

That is,
λv⊤ = v⊤A and v⊤B = 0⊤m

Hence,

v⊤AB = λv⊤B = 0⊤m

v⊤A2B = λv⊤AB = 0⊤m
...

...

v⊤An−1B = λv⊤An−1B = 0⊤m

so that
v⊤
[
B AB · · · An−1B

]
= 0⊤nm

contradicting (2).

[(3) =⇒ (2)]. Suppose (3) holds and (2) does not. Consider Im(C). Since (2) does not hold, Im(C) ⊊ Rn.
Note that Im(C) is an A–invariant subspace containing Im(B). Let V1 be any subspace of Rn such that

Im(C)⊕ V1 = Rn
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Then, by the second representation theorem, there exists a representation of A,B with respect to Im(C), V1

given by

Ã =

[
Ã11 Ã12

0 Ã22

]
, B̃ =

[
B̃1

0

]
(9)

Aside: This is actually called the controllable decomposition! It iwll be used in the next section to better
understand the concept of ”stabilizability”.

Thus, ∃ T ∈ Rn×n such that
T−1AT = Ã and T−1B = B̃

Now
rank

[
sI −A B

]
= rank

[
sI − Ã B̃

]
since [

sI − Ã B̃
]
= T−1

[
sI −A B

] [T 0
0 I

]
Further,

rank
[
sI − Ã B̃

]
= rank

[
sI − Ã11 −Ã12 B̃1

0 sI − Ã22 0

]
But this has rank less than n for all s ∈ σ(Ã22), contradicting (3).

Typically (meaning in most references), the test

rank(C) = 0

is called the controllability test, while the test

rank([sI −A B]) = n, ∀ s ∈ C,

is called the PBH test for controllability where ”PBH” is an abbreviation for Popov-Belevitch-Hautus, the
three namesakes of the result.

Example 22. The equations of motion of a satellite, linearized around a steady-state solution, are given by
ẋ = Ax+ Bu, where x1 and x2 denote the perturbations in the radius and the radial velocity, respectively,
x3 and x4 denote the perturbations in the angle and the angular velocity, and

A =


0 1 0 0

3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 1

 , B =


0 0
1 0
0 0
0 1


The input is a radial thruster u1 combined with a tangential thruster u2.

a. is the system controllable? Yes, this is easy to check by just computing

rank(C) = rank
([
B AB

])
= rank



0 0 1 0
1 0 0 2
0 0 0 1
0 1 −2 1


 = 4

That is we did not need to consider higher powers of A.

b. What is the thrusters individually fail?

If u2 fails we have

rank(C) = rank
([
B2 AB2 A2B2

])
= rank



0 1 0 −1
1 0 −1 −4
0 0 −2 −2
0 −2 −2 0


 = 3
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so its not controllable.

If u1 fails we have

rank(C) = rank
([
B2 AB2 A2B2

])
= rank



0 0 2 2
0 2 2 0
0 1 1 −3
1 1 −3 −7


 = 4

so that the system remains controllable.

Fact. Some facts:
1. Since the controllability matrix does not depend on time, if the LTI system is CC for some ∆ > 0

then it is CC for all ∆ > 0. Because of this fact, we often say that the pair (A,B) is controllable.

2. Controllability test can be done by just examining A and B without computing the grammian.
The matrix-rank test is attractive in that it enumerates the vectors in the controllability subspace.
However, numerically, since it involves powers of A, numerical stability needs to be considered.

3. The PBH test involves simply checking the condition at the eigenvalues. It is because for (sI−A,B)
to have rank less than n, s must be an eigenvalue.

4. The range space of the controllability matrix is of special interests. It is called the controllable
subspace and is the set of all states that can be reached from zero-initial condition. This is A–
invariant.

5. Using the basis for the controllable subspace as part of the basis for Rn, the controllability property
can be easily seen in the transformed representation in (9).

4.3 LTI Observability

The dual of the controllability theorem for LTI gives a similar theorem for observability.

Theorem 23 (LTI Observability Tests). The following are equivalent:

The LTI system is completely observable on some [0,∆] (1)

⇐⇒ rank




C
CA
...

CAn−1


 = n (2)

⇐⇒ rank

([
sI −A

C

])
= n, ∀ s ∈ C (3)

The proof is very similar to the one for controllability (see [C& D], Chapter 8 for details and alternate proof
for controllability using observability proof). This being said, it is perhaps instructive to see the proof sketch
for the equivalence of (2) with (3).

Proof. Instead of considering the range space of the controllability matrix, we consider the null space (kernel)
of the observability matrix. Its kernel is also A-invariant. Hence if the observability matrix is not full rank,
then using basis for its kernel as the last k basis vectors of Rn, the system can be represented as

ż =

[
Ã11 0

Ã21 Ã22

]
z +

[
B̃1

B̃2

]
u

y =
[
C̃ 0

]
z

(10)

where

C =
[
C̃ 0

]
T−1, and A = T

[
Ã11 0

Ã21 Ã22

]
T
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and the dim of Ã22 is non-zero (and is the dimension of the kernel of the observability matrix).

Aside: The system in (10) is actually called the observable decomposition! It iwll be used in the next section
to better understand the concept of ”detectability”.

Fact. Some facts:
1. Observability of a LTI system does not depend on the time interval. So, theoretically speaking, if

observing the output and input for an arbitrary amount of time will be sufficient to figure out x0.
In reality, when more data is available, one can do more averaging to eliminate effects of noise (e.g.
using the Least squares Kalman Filter approach).

2. The subspace of particular interest is the null space of the controllability matrix. An initial state
lying in this set will generate identically 0 zero-input response. This subspace is called the unob-
servable subspace.

3. Using the basis of the unobservable subspace as part of the basis of Rn, the observability property
can be easily seen.

Remark. An easy extension to the proofs of the above theorems is that

Im(Wc,[0,∆]) = Im(Lc) = Im(C) ⊂ Rn

Ker(Wo,[0,∆]) = Ker(Lo) = Ker(O) ⊂ Rn

4.4 Lyapunov Tests for Controllability/Observability

As noted, all the concepts we learn in this class have a strong connection with the Lyapunov equation.

Recall for LTV systems the following facts.

Fact 24. The function t1 7→ Wr,[t0,t1] is the solution of the linear matrix equation

Ẋ(t) = A(t)X(t) +X(t)A∗(t) +B(t)B∗(t)

with X(t0) = 0. Similarly, The map t0 7→ Wo,[t0,t1] is the solution to the linear matrix equation

Ẋ(t) = −A∗(t)X(t)−X(t)A(t)− C∗(t)C(t)

with X(t1) = 0.

For LTI, this gives rise to the Lyapunov tests for controllability (resp. observability). The utility of this is
in the synthesis of feedback controllers that stablilize the system. You will have a homework on this.

Consider the continuous time system
ẋ = Ax+Bu, (CT)

and analogous discrete time (DT) system,

x+ = Ax+Bu (DT)

Proposition 25. Assume that A is Hurwitz—i.e. spec(A) ⊂ C◦
−—in the continuous time case, or A is a

Schur matrix—i.e., spec(A) ⊂ D1—in the discrete time case. The LTI system is controllable if and only if
there is a unique positive-definite solution W to the following Lyapunov equation

AW +WA⊤ = −BB⊤,

Moreover, the unique solution is

W =

∫ ∞

0

eAτBB⊤eA
⊤τ dτ
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Analogously, in the discrete time case, there is a unique positive definite solutionW to the following Lyapunov
(Schur) equation

AWA⊤ −W = −BB⊤,

and it is expressed as

W =

∞∑
t=0

AtBB⊤(A⊤)t

4.5 Stabilizing via Feedback

One of the important applications of controllability is that if we know our system is controllable then we
can design a feedback controller that stabilizes the system. Let χA denote the characteristic polynomial of
A—i.e,

χA = det(sI −A).

Proposition 26. For matrices A ∈ Rn×n, B ∈ Rn×m and for any monoic real polynomial π of degree n,
there exists F ∈ Rm×n such that

χA+BF = π

if and only if the pair (A,B) is controllable.

The interpretation of the above proposition is through the idea of constant state feedback. Suppose that the
state variables are available, (from, say, measurements). Then, we calculate Fx for a given F ∈ Rm×n and
we feedback Fx to the input: the resulting feedback system is, with u = 0,

ẋ = (A+BF )x

Thus the proposition asserts that the pair (A,B) is controllable if and only if we can always choose F so that
the closed-loop characteristic polynomial χA+BF has as roots a list of n preassigned points in C; of course,
these n points must be located symmetrically with respect to the real axis because the polynomial χA+BF

has real coefficients.

Key Take Away: This is to say that given any unstable A with (A,B) controllable we can always stabilize
it by constant state feedback.

4.6 Controllable Canonical Form

Consider a single-input-single-output LTI system that is completely controllable. We claim that there exists
a similarity transformation that converts the system to the form

ẋ =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

0 0 · · · 0 0 1
−an −an−1 −an−2 −an−3 · · · −a1


x+


0
0
...
0
1

u

Indeed, since the system is completely controllable, the controllability matrix C has rank n and is invertible
so that

C−1 =

[
C̃
q

]
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where q is the last row of the matrix inverse. That is,

C−1 =

[
C̃
q

] [
b Ab · · · An−1b

]
= I

so that

qAi−1b =

{
0, i = 1, . . . , n− 1
1, i = n

Then 
qb
qAb
...

qAn−1b

 =


0
...
0
1

 = B̄

and by Cayley-Hamilton we have that
qA
qA2

...
qAn−1

qAn

 =


qA
...

qAn−1

−q
∑n

i=1 an−i+1A
i−1



=



0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

0 0 · · · 0 0 1
−an −an−1 −an−2 −an−3 · · · −a1




q
qA
...

qAn−2

qAn−1


= ĀT

where

T =


q
qA
...

qAn−1


Hence, A = T−1ĀT and b = T−1B̄.

Note. Any system that can be placed in controllable canonical form can be stabilized by state feedback.

Example 27. Consider

ẋ =

 0 1 0
0 0 1

−α3 −α2 −α1

x+

00
1

u

With state feedback the input is u = −Kx where K is a constant row vector. Consider the polynomial
p(a) =

∑3
k=0 aks

3−k = a0s
3 + a1s

2 + a2s + a3 with a0 = 1. For the closed loop feedback system with
K =

[
k1 k2 k3

]
, we have

A−BK =

 0 1 0
0 0 1

−α3 − k1 −α2 − k2 −α1 − k3


Then, χ(s) = s3+(α1+k3)s

2+(α2+k2)s+α3+k1. Equating the coefficients with p(s) we get a1 = α1+k3,
a2 = α2 + k2, and a3 = α3 + k1. So, K = [a3 − α3 a2 − α2 a1 − α1]

T .
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Example 28. Consider

ẋ =

[
1 0
0 2

]
x+

[
1
1

]
u

and the desired characteristic polynomial p(s) = (s+ 1)(s+ 3). First,

rank C = rank

([
1 1
1 2

])
= 2

Then for u = −kx,

det(sI −A+ bk) = det

([
s 0
0 s

]
−
[
1 0
0 2

]
+

[
1
1

] [
k1 k2

])
= det

([
s− 1 + k1 k2

k1 s− 2 + k2

])
= (s− 1 + k1)(s− 2 + k2)− k2k1

= (s− 1)(s− 2) + k1(s− 2) + k2(s− 1)

= s2 − 3s+ 2 + k1s− 2k1 + k2s− k2

= s2 + (k1 + k2 − 3)s+ 2− 2k1 − k2

So then by equating coefficients of the above and

p(s) = s2 + 4s+ 3

we get

4 = k1 + k2 − 3 =⇒ 7− k2 = k1

3 = 2− 2k1 − k2 =⇒ 1 = −2k1 − k2 =⇒ 1 = −2(7− k2)− k2 = −14 + k2

so that
k1 = −8 and k2 = 15

and the closed loop system is thus

ẋ = (A−BK)x =

[
9 15
8 17

]
x

5 M3-RL5: Stabilizability and Detectability

It is often useful to characterize when a system that is not fully controllable can be stabilized, and analogously
when a system that is fully observable can still be detectable. To this end, we first start with decomposing
the state space.

5.1 Extracting unobservable/uncontrollable dynamics

We have the following result stating that the kernel of the observability matrix and the image of the con-
trollability matrix are A-invariant.3

Proposition 29. Consider the LTI system (A,B,C).

a. The set of all unobservable states is the A-invariant subspace Ker(O) ⊂ Cn

b. The controllable subspace is the A-invariant space Im(C)
3The notion of A-invariant subspaces is covered in [510]. As a reminder, a space U is A-invariant if and only if for any

u ∈ U , we have that Au ∈ U .
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Proof. We prove only the first claim. Suppose that v ∈ Ker(O) so that
C
CA
...

CAn−1

 v =

00
...0


We claim that Av ∈ Ker(O). Indeed, 

C
CA
...

CAn−1

Av =


CA
CA2

...
CAn

 v (11)

From the fact that v ∈ Ker(O) we have that CAkv = 0 for all k ∈ {0, . . . , n− 1} so that


C
CA
...

CAn−1

Av =


CA
CA2

...
CAn−1v
CAn

 v =


0
0
...
0

CAnv

 (12)

Then, by the Cayley Hamilton theorem which states that any matrix A satisfies its only characteristic
polynomial—i.e., χA(A) = 0—(cf. [510]), we have that

An = −cn−1A
n−1 − · · · − c1A− c0I

so that
CAn = (−cn−1CAn−1 − · · · − c1CA− c0C)v

and we know from the fact that v ∈ Ker(O) that all these terms are zero.

Q: Can you prove the second claim?

Unobservable states. Suppose, for simplicity, that D = 0 and that the LTI system given by

ẋ = Ax+Bu

y = Cx
(13)

is unobservable. Since the system is unobservable we have that dimKer(O) =: r < n, the unobservable
subspace is r–dimensional. Choose a basis for Ker(O) and precede these r basis-vectors with n − r vectors
from Cn so that we have a new basis for Cn (possible by the basis completion theorem [510]). Create a
matrix T from these vectors.

Proposition 29 gives us that Ker(O) is A–invariant. By the definition of the observability matrix, we have
that Ker(C) ⊃ Ker(O) which implies that the last r basis vectors are in the nullspace of C.

Thus, in the new basis, the system is represented by[
ẋ1

ẋ2

]
=

[
Ao 0
A21 Auo

]
︸ ︷︷ ︸

T−1AT

[
x1

x2

]
+

[
Bo

0

]
︸ ︷︷ ︸
T−1B

u

y =
[
Co 0

]︸ ︷︷ ︸
CT

[
x1

x2

]
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v (Ao, Bo, Co) y = Cox1

A21x1

(Auo, Buo, 0)

x1

x2

Figure 5: Extracting the unobservable part.

where (x1, x2) ∈ Cn−r × Cr. The above equations imply that the system looks like Fig. 5.

As the figure shows, we have extracted an r–dimensional subsystem from R and the state x2 of that subsys-
tem is unobservable. Since by Proposition 29.a the set of all unobservable states is of dimension r the pair
(Co, Ac) is observable.

Controllable Part. By Proposition 29 we have that the image of the controllability matrix is A-invariant.
Consider a system that is not completely controllable. Let dim Im(C) =: q < n—that is, the controllable
subspace is q–dimensional. Choose a basis for Im(C) and complete it n− q vectors from Cn to obtain a basis
for Cn. As with the observable decomposition, let T be the similarity transform defined by stacking up these
basis vectors.

By the definition of the controllability matrix Im(C) ⊃ Im(B), hence Im(B) is in the subspace generated by
the first q basis vectors. Consequently, in this new basis, the system representation is of the form[

ẋ1

ẋ2

]
=

[
Ac A12

0 Auc

] [
x1

x2

]
+Bcu

y =
[
Cc Cuc

] [x1

x2

]
where (x1, x2) ∈ Cq × Cn−q. As Figure 6 shows, we have extracted an (n − q)–dimensional subsystem that
is totally unaffected by the input u, hence is uncontrollable. The set of controllable states is q-dimensional,
x1 ∈ Cq and all the states of the second (n−q)–dimensional subsystem are unaffected by u, the pair (Ac, Bc)
is controllable.

v (Ac, Bc, Cc) y

A21x1

(Auc, 0, Cuc)

+

Cucx2

Ccx1 +

x1

x2

Figure 6: Extracting the unobservable part.

5.2 Kalman Decomposition

The entire state space and system can be decomposed into the parts that are observable-controllable,
unobservable-controllable, observable-uncontrollable and finally unobservable-uncontrollabe.
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Let Im(C) be the reachable or controllable subspace.

Proposition 30. The following hold:

1. Im(C) is A-invariant.

2. Im(C) = Im(B) + Im(AB) + · · ·+ Im(An−1B) (sum of subspaces not direct sum)

Let Ker(O) be the unobservable subspace.

Proposition 31. The following hold:

1. Ker(O) is A-invariant.

2. Ker(O) = Ker(C) ∩Ker(CA) ∩ · · · ∩Ker(CAn−1)

In addition, we have the following result.

Proposition 32. Im(C) is the smallest A-invariant subspace containing Im(B) and Ker(O) is the largest
A-invariant subspace contained in Ker(C).

With these reminders we can now generate the Kalman decomposition. Let

Rn = Im(C)⊕ V1 and Rn = V2 ⊕Ker(O)

where V1 and V2 are (any) direct summands of Im(C) and Ker(O), respectively.

Define
Σco = Im(C) ∩ V2, Σ

�co
= V1 ∩ V2, Σc�o

= Im(C) ∩Ker(O), Σ
�c�o

= V1 ∩Ker(O)

Clearly
Im(C) = Σco ⊕ Σc�o

, Ker(O) = Σ
�co
⊕ Σ

�c�o

and
V1 = Σ

�co
⊕ Σ

�c�o
, V2 = Σco ⊕ Σ

�co

and
Rn = Σco ⊕ Σc�o

⊕ Σ
�co
⊕ Σ

�c�o

Applying these similarity transforms gives us a representation of A,B and C as
ẋco

ẋcō

ẋc̄o

ẋc̄ō

 =


A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44



xco

xcō

xc̄o

xc̄ō

+


B1

B2

0
0

u

y =
[
C1 0 C3 0

] 
xco

xcō

xc̄o

xc̄ō


(14)

More detail can be found in Chapter 16 of [JH] or Chapter 8.6 of [C& D]. Figure 7 depicts the block diagram
for this decomposition.

The main result is the following theorem.

Theorem 33. For every LTI system (A,B,C) there is a similarity transformation that takes it to the form
(14) for which

1. The pair ([
A11 0
A21 A22

]
,

[
B1

B2

])
is controllable
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Σc,o

Σ
�c,�o

Σc,�o
Σ
�c,o

u +

A23
A21 A13

A43A24

B1

B2

y
DC1

C3

Figure 7: Kalman Decomposition

2. The pair ([
A11 A13

0 A33

]
,
[
C1 C3

])
is observable.

3. The triple (A11, B1, C1) is controllable and observable.

5.3 Stabilizability and Detectability

With these fundamental decompositions (by way of similarity transformations) to the different subspaces,
we can discuss stabilizability and detectability.

5.3.1 Stabilizability

We saw in Section 5.1 (and the proof of the controllability theorem for LTI) that any LTI system is ”similar”
(again by way of a similarity transform) to the standard form for uncontrollable systems:[

ẋ1

ẋ2

]
=

[
Ac A12

0 Auc

] [
x1

x2

]
+Bcu

y =
[
Cc Cuc

] [x1

x2

] (15)

where

• we denote the controllable states as x1 and uncontrollable states as x2;

• the matrices Ac and Auc correspond to the dynamics of the controllable and uncontrollable states,
respectively;

• the matrix Bc corresponds to the coefficient of the control input to the controllable states;

• and, finally, the matrices Cuc and Cc correspond to the transformed output matrix C to these new
coordinates.

The details on how to construct this representation follow from results in [510], and is described in §5.1.

Definition 34. The pair (A,B) is stabilizable if there is a similarity transform to the form (15) with Au

Hurwitz stable.

Stabilizability can be viewed as an infinite-time version of controllability in the sense that if a system is
stabilizable, then its state can be transferred to the origin from any initial state, but this may require infinite
time.
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Theorem 35. The following are equivalent:

1. The continuous-time LTI system (A,B) is stabilizable

2. Every eigenvector of A⊤ corresponding to an eigenvalue with a positive or zero real part is not in the
kernel of B⊤.

3. (PBH test) rank([A− λI B]) = n for all λ ∈ C such that Re(λ) ≥ 0.

4. There is a positive definite solution P = P⊤ ≻ 0 to the Lyapunov matrix inequality

AP + PA⊤ −BB⊤ < 0

Like with controllability we can leverage the Lyapunov test for stabilizability in item 3 above to synthesize
stabilizing feedback controllers.

Controller Synthesis. Consider
ẋ = Ax+Bu

and suppose this system is stabilizable (i.e. all unstable modes are in the controllable subspace). Let
K := 1

2B
⊤P−1 where P = P⊤ ≻ 0 solve the Lyapunov matrix inequality

AP + PA⊤ −BB⊤ < 0

This inequality can be rewritten as

(A− 1

2
BB⊤P−1)P + P (A− 1

2
BB⊤P−1)⊤ = (A−BK)P + P (A−BK)⊤ < 0

Multiplying this equation on both sides by Q := P−1, we obtain

Q(A−BK) + (A−BK)⊤Q < 0

so that since Q ≻ 0, by the Lyapunov stability theorem A−BK is Hurwitz stable. This in turn means that
the controller u = −Kx asymptotically stabilizes the system (A,B).

5.3.2 Detectability

As with the standard form for uncontrollable systems, there is a standard form for observable systems
obtainable by way of a similarity transform. The unobservable form is given by[

ẋ1

ẋ2

]
=

[
Ao 0
A21 Auo

] [
x1

x2

]
+

[
Bo

0

]
u

y =
[
Co 0

] [x1

x2

] (16)

as shown in §5.1.

Definition 36. A pair (A,C) is detectable if it is similar to a system in the standard form (16) with Auo a
Hurwitz matrix.

The above definition is stating that all unobservable modes are stable.

Theorem 37 (Detectability Tests). The following are equivalent:

1. The continuous-time LTI system (A,C) is detectable

2. Every eigenvector of A corresponding to an eigenvalue with a positive or zero real part is not in the
kernel of C.
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3. (PBH test)

rank

([
A− λI

C

])
= n, ∀λ ∈ C : Re(λ) ≥ 0.

4. There is a positive definite solution P = P⊤ ≻ 0 to the Lyapunov matrix inequality

AP + PA⊤ − C⊤C < 0

Observer Synthesis. Analogous to the synthesis of stabilizing feedback, we can also use the tools in
this module to synthesis observers. This amounts to designing a state estimation scheme. Consider the
continuous time system

ẋ = Ax+Bu, y = Cx+Du

and let u = −Kx be a stabilizing feedback controller. When only the output y can be measured, the control
law cannot be implemented, but if the pair (C,A) is detectable, it should be possible to estimate x from the
system’s output up to an error that vanishes as t → ∞.

We have already seen that for an observable system, the state can be recovered from the input and output
over an interval [t0, t1] using the observability Grammian. This just gives the value at a particular time.
What we want to do is design a method of recovering the state for all time.

The typical state feedback topology is depicted in Figure 8.

B
∫

C

A

F

r u yx

−

Figure 8: State Feedback Topology/Block Diagram

However, often the state vector is inaccessible for direct measurement. Techniques exist to estimate the
state.

An observer is a signal reconstruction device which provides an estimate of inaccessible (aka unobservable)
states.

(A,B,C)

Plant

observer

F

r u y

−

Figure 9: Observer/Plant Block Diagram

There are several ways to derive the state equations for the full-state observer. The approach in these notes
is to model the observer state equations as a model of the actual system plus a correction term based on the
measured output and the estimate of what that output is expected to be.

With the actual system described by
ẋ = Ax+Bu, y = Cx
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L
∫

C

A

B

y

u

ŷx̂˙̂x

−

Figure 10: Observer Detailed Block Diagram

Let
˙̂x = Ax̂+Bu+ L(y − ŷ), ŷ = Cx̂

where L ∈ Rn×p. Hence,

˙̂x = Ax̂+Bu+ Ly − LCx̂ = (A− LC)x̂+Bu+ Ly

and
y − ŷ = C(x− x̂)

We call
e(t) = x(t)− x̂(t)

the estimation error which satisfies

ė = ẋ− ˙̂x = Ax+Bu− (A− LC)x̂−Bu− Ly

= Ax− (A− LC)x̂− LCx = (A− LC)x− (A− LC)x̂

= (A− LC)e

It therefore follows that if we can choose the feedback matrix L to be such that the system matrix (A−LC)
has negative real parts, then

x̂ → x, as t → ∞

(i.e. an asymptotic estimate) irrespective of the plant input u!

As we have already seen with pole placement, the gain matrix L of the full-state observer can be computed
using any of the methods used to compute the control gain matrix K. We will assume that the system
is completely observable. Therefore, the closed-loop eigenvalues of the observer can be placed at specified
locations through the choice of L. For the control problem with full-state feedback, the closed-loop system
matrix of interest is A − BK. Comparing that with the observer problem, the closed-loop system matrix
is A − LC. The structure of those two matrices is similar; only the order of the unknown matrix differs
between BK and LC.

Recall from [510] that the eigenvalues of a matrix and its transpose are the same. Hence, the observer
problem can be formulated the same way as the control problem by considering the matrix (A − LC)⊤ =
A⊤ − C⊤L⊤.

example. Consider the system

ẋ(t) =

[
−1 0
1 −1

]
x(t) +

[
2
0

]
u(t)

y(t) =
[
0 1

2

]
x(t)
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Suppose we want to place the poles of the observer at {−4,−4}. It is easy to check that the system is
completely observable. Let L = (ℓ1, ℓ2) be the unknown observer gain. Write the generic state estiamtion
matrix

A− LC =

[
−1 0
1 −1

]
−
[
ℓ1
ℓ2

] [
0 1

2

]
=

[
−1 − 1

2ℓ1
1 −1− 1

2ℓ2

]
The characteristic polynomial of the observer is

det(λI −A+ LC) = λ2 +

(
2 +

1

2
ℓ2

)
λ+

1

2
ℓ2 +

1

2
ℓ1 + 1

Impose the polynomial equals the desired one

(λ+ 4)2 = λ2 + 8λ+ 16

Then we solve the linear system of equations in ℓ1, ℓ2 to get

ℓ1 = 18, ℓ2 = 12

The resulting Luenberger observer is

dx̂

dt
=

[
−1 −9
1 −7

]
x̂(t) +

[
2
0

]
+

[
18
12

]
y(t)

6 M3: Additional Notes

In this section, I provide additional notes on topics including duality between controllability and observability,
and discrete time controllability and observability.

6.1 Duality

The controllability and observability theorems we have stated so far are intimately related. Consider the
system

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

Recalling our knowledge about computing adjoints, we can write the dual representation as

− ˙̃x(t) = A∗(t)x̃(t) + C∗(t)ũ(t)

ỹ(t) = B∗(t)x̃(t) +D∗(t)ũ(t)

where here x̃(t) ∈ Cn, ũ(t) ∈ Cp, ỹ(t) ∈ Cm. The state transition matrix is

Ψ(t, τ) = Φ(τ, t)∗

The minus sign on the dynamics essentially captures that the dual runs in reverse time. If we take the dual
of the dual, we get

(A(·),−B(·),−C(·), D(·))

so that the original system is equal to the dual of the dual modulo a sign change for the state. And thus

(L∗
r)

∗ = −Lr, (L∗
c)

∗ = −Lc, (L∗
o)

∗ = −Lo

It turns out that controllability to zero on [t0, t1] is the dual of unobservability on [t0, t1] and vice versa.
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Theorem 6.1 (Duality: controllability to zero versus unobservability.) The subspace of all states of
R(·) that are controllable to zero (unobservable) on [t0, t1] is the orthogonal complement of the subspace
of all states of its dual R̃(·) that are unobservable (controllable to zero, resp.) on [t0, t1]. That is,

Im(Lc) = Ker(L̃o)
⊥ and Ker(Lo) = Im(L̃c)

⊥

or equivalently

Im(Wc[t0, t1]) = Ker(W̃o(t0, t1))
⊥ and Ker(Wo(t0, t1)) = Im(W̃c[t0, t1])

⊥

Proof. First, we have that x0 of (A,B,C,D) is controllable to zero on [t0, t1] if and only if there exists u[t0,t1]

such that

x0 = −
∫ t1

t0

Φ(t0, τ)B(τ)u(τ) dτ

or equivalently, if and only if x0 ∈ Im(Lc) where

Lc : u[t0,t1] 7→
∫ t1

t0

Φ(t0, τ)B(τ)u(τ) dτ

Now, we know that
x0 is unobservable on [t0, t1] ⇐⇒ x0 ∈ Ker(Lo)

so that x̃0 of (−A∗,−C∗, B∗, D∗) is unobservable on [t0, t1] if and only if L̃0x̃0 = 0, or more precisely, if and
only if

B(t)∗Ψ(t, t0)x̃0 = B∗(t)Φ(t0, t)
∗x̃0 = 0, ∀t ∈ [t0, t1] (17)

However, we know that

(A,B) controllable on [t0, t1] ⇐⇒ Im(Lc) = Cn ⇐⇒ Im(LcL∗
c) = Cn ⇐⇒ det(Wc(t0, t1)) ̸= 0

Hence, (17) is equivalent to x̃0 ∈ Ker(Wc(t0, t1)) = Ker(L∗
c). We also know that Im(Lc) = Ker(L∗

c)
⊥, so

that we have established Im(Lc) = Ker(L̃o)
⊥ since L∗

c = L̃o.

Corollary 38. The system (A(·), B(·), C(·), D(·)) is controllable (observable) on [t0, t1] iff its dual is ob-
servable (controllable, resp.) on [t0, t1].

6.2 Discrete Time Controllability and Reachability

Remark. The fundamental difference between CT and DT is that DT controllability to zero does not
necessarily imply reachability from zero.

Definition 39. We say that the pair (A(·), B(·)) is controllable on [k0, k1] iff for all (x0, k0) and for all
(x1, k1) there exists a control sequence u[k0,k1−1] = (u(k0), . . . , u(k1 − 1)) that transfers the (x0, t0) to the
(x1, t1).

Given the system (A(·), B(·)), we know that u[k0,k1−1] transfers x0 to x1 iff

x1 = s(k1, k0, x0, u0) = Φ(k1, k0)x0 +

k1−1∑
ℓ=k0

Φ(k1, ℓ+ 1)B(ℓ)u(ℓ)

This expression, in turn, shows that there will be such an input taking arbitrary x0 to arbitrary x1 if and
only if the linear map

Lr(k0, k1) : Ud(k0, k1 − 1) → Cn : u[k0,k1−1] →
k1−1∑
ℓ=k0

Φ(k1, ℓ+ 1)B(ℓ)u(ℓ)
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is surjective. This map is the reachability map and since it is linear, we can invoke the matrix representation
theorem to note that it has a matrix representation Lr given by

Lr(k0, k1) =
[
B(k1 − 1) Φ(k1, k1 − 1)B(k1 − 2) · · · Φ(k1, k0 + 1)B(k0)

]
Unlike the CT case,

Φ(k1, k0) = A(k1 − 1)A(k1 − 2) · · ·A(k0)

has an inverse Φ(k0, k1) = (Φ(k1, k0))
−1 iff det(A(k)) ̸= 0 for all k ∈ [k0, k1 − 1]. Because of this fact, we

have the following result.

Theorem 40. The following implications hold:

(A(·), B(·)) is controllable on [k0, k1]

⇐⇒ ∀x1 ∈ Cn, ∃u[k0,k1−1] that steers (0, k0) to (x1, k1) (reachable)

=⇒ ∀x0 ∈ Cn, ∃u[k0,k1−1] that steers (x0, k0) to (0, k1) (controllable to zero)

where the last statement is actually an equivalence if det(A(k)) ̸= 0 for all k ∈ [k0, k1 − 1].

Example 41. Show that the constant pair (A, b) with

A =

0 1 0
0 0 1
0 0 0

 , b = e2

is not controllable on [0, 3] yet every state x0 is driven to zero at k = 3. Indeed, this matrix A is nilpotent
with k = 3 and hence with the zero control input every state goes to zero. On the other hand there are
clearly states x1 which are not reachable by any control.
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