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Module 2: Stability
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1 M2-RL1: Introduction to Stability

You may recall from an undergrad controls or signals class input-output stability. In our study of stability,
we will start with state related stability concepts (stability in the sense of Lyapunov).

Intuition. Let’s consider the following examples.
a. Continuous Time. Recall that the solution to

ẋ = −λx

is
x(t) = x0e

−λt,

and if λ > 0 solution decays to zero, otherwise it blows up. This λ is an ‘eigenvalue’ for this scalar
system, and its sign can be used to characterize a notion of stability.

b. Discrete Time. Recall that the solution to

xk+1 = µxk

is
xk = µkx0

and if |µ| < 1, then the solution decays to zero and otherwise, it blows up.
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Examples.

1. Linear systems. Consider the linear system ẋ = Ax.

• If A is non-singular then x∗ = 0 is the unique equilibrium.
• If A is singular, then the null space defines a continuum of equilibria.

2. Logistic Growth Model. In population dynamics, the logistic growth model is common:

ẋ = f(x) = r
(
1− x

K

)
x, r > 0, K > 0

The equilibria are determined by solving

f(x) = r
(
1− x

K

)
x = 0

Clearly
x∗ = 0, x∗ = K

are equilibrium. The state variable x > 0 denotes the population and K is the carrying capacity.When
x ∈ R is scalar, stability can be determined from the sign of f(x) around the equilibrium. In this
example, f(x) > 0 for all x ∈ (0,K) and f(x) < 0 for all x > K. Thus

• x = 0 is an unstable equilibrium
• x = K is stable (in fact asymptotically so)

r

K x

f(x)

Notice that the second example is a nonlinear system. Local stability properties of an equilibrium x∗ for a
nonlinear system can be determined by linerizing the dynamics (i.e., the vector field f(x)) about the point
x∗: i.e.,

f(x∗ + δx̃) = f(x∗)︸ ︷︷ ︸
=0

+Df
∣∣
x=x∗︸ ︷︷ ︸

=:A

δx̃+O(δ2)
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so that the linearized model is given by
˙̃x = Ax̃

Stability of this system implies stability of the equilibrium x∗ for the nonlinear dynamics.

Coming back to the nonlinear example of the logistic growth dynamics, we have that

f(x)

f ′(0) > 0
unstable

f ′(K) < 0
stable

1.1 Continuous Time

Recall that for a given linear system

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

the zero input response is given by
x(t) = Φ(t, t0)x0

where Φ(t, t0) is the state transition matrix and x(t0) = x0. Note that

x0 = 0 =⇒ x(t) = 0 ∀t

The points x∗ = 0 is called the equilibrium point.

Definition 1 (Stable Equilibrium). The following are characterizations of stability (in the sense of Lya-
punov).

a. Marginally Stable: Consider the equilibrium point x∗ = 0.

x∗ is stable ⇐⇒ ∀ x0 ∈ Rn, ∀t0 ∈ Rn, t 7→ x(t) = Φ(t, t0)x0 is bounded ∀ t ≥ t0.

Note: the effect of initial conditions does not grow unbounded with time (but it may grow temporarily
during a transient phase).

b. Asymptotic Stability. Consider the equilibrium point x∗ = 0.

x∗ = 0 is asymptotically stable ⇐⇒ x0 = 0 is stable and x(t) = Φ(t, t0)x0 −→ 0 as t→ ∞.

Note: the effect of initial conditions eventually disappears with time.

c. Exponential Stability. Consider the equilibrium point x∗ = 0.

x∗ = 0 is exponentially stable ⇐⇒ ∃M,α > 0 : ∥x(t)∥ ≤M exp(−α(t− t0))∥x0∥

We say an equilibrium point or the system is unstable if it is not marginally stable in the sense of Lyapunov.
For such systems, the effect of initial conditions (may) grow over time (depending on the specific initial
conditions).
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Theorem 2 (Asymptotic Stability of Linear CT Systems). The following claim holds:

x = 0 is asymptotically stable ⇐⇒ Φ(t, 0) → 0 as t→ ∞.

Proof. (⇐=) Observe that
x(t) = Φ(t, t0)x0 = Φ(t, 0)Φ(0, t0)x0

since Φ(t, 0) → 0 as t→ ∞ then ∥Φ(t, 0)∥ → 0 as t→ ∞ and

∥x(t)∥ ≤ ∥Φ(t, 0)∥∥Φ(0, t0)∥∥x0∥

Thus x(t) → 0 as t→ ∞.
(=⇒) We argue by contradiction: assume that t → Φ(t, 0) does not tend to zero as t → ∞, i.e. ∃ i, j such
that1

Φij(t, 0) ̸→ 0 as t→ ∞

Choose

x0 =



0
...
0
1
0
...
0




where 1in the j-th spot

Thus, we have
xi(t) = Φij(t, 0) ̸→ 0 as t→ ∞

contradicting the asymptotic stability of zero.

A stability concept that is equivalent to exponential stability for LTV systems is uniform asymptotic sta-
bility.

Definition 3 (Uniform Asymptotic Stability). We say that the zero solution of ẋ = A(t)x(t) on t ≥ 0 is
uniformly asymptotically stable if and only if

a. t 7→ Φ(t, t0) is bounded on t ≥ t0 uniformly in t0 ∈ R+, i.e.,

∃ k <∞ : ∀t0 ∈ R+, ∥Φ(t, t0)∥ ≤ k, ∀t ≥ t0

b. t 7→ Φ(t, t0) tends to zero as t→ ∞ uniformly in t0 ∈ R+, i.e.,

∀ε > 0, ∃T (ε) > 0 : ∀t0 ∈ R+, ∥Φ(t, t0)∥ ≤ ε, ∀t ≥ t0 + T (ε) (1)

In the LTI case, i.e. ẋ = Ax,

asymptotic stability ⇐⇒ exponential stability

Indeed, Φ(t, t0) = exp(A(t− t0)) depends only on the elapsed time t− t0, so that the zero solution of ẋ = Ax
is asymptotically stable if and only if the zero solution is uniformly asymptotically stable if and only if the
zero solution is exponentially stable.

Notation. Recall that ∃! means ”there exists a unique”.

1The notation Φij denotes the (i, j) entry of the matrix Φ.
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Proposition 4 (LTV Exponential Stability).

A(·) uniformly asymptotically stable ⇐⇒ A(·) exponentially stable

Proof. (⇐=) Suppose that A(·) is exponentially stable. Then, items a. and b. of Definition 3 hold with
k = m and T (ε) > 0 such that exp(−αT (ε)) ≤ εm−1. Hence, we have that A(·) is uniformly asymptotically
stable.

(=⇒) Suppose that A(·) is uniformly asymptotically stable. Given any T > 0, we have that

∀t ≥ t0, ∃! n ∈ N, ∃! s ∈ [0, T ) : t− t0 = nT + s

Let t0 ∈ R+ be arbitrary but fixed and for b., pick some T (ε) > 0 for ε = 1/2. Then, by (1), we have that

∥Φ(s+ t0 + T, t0)∥ ≤ 1/2 ∀ s ≥ 0.

By the properties of the state transition matrix (cf Module 1), we know that

Φ(s+ t0 + 2T, t0) = Φ(s+ t0 + 2T, t0 + T )Φ(t0 + T, t0)

This in turn implies that

∥Φ(s+ t0 + 2T, t0)∥ ≤ ∥Φ(s+ t0 + 2T, t0 + T )∥∥Φ(t0 + T, t0)∥ ≤ 2−2,

we have that (by induction),

∀s ≥ 0,∀n = 1, 2, . . . , ∥Φ(s+ t0 + nT, t0)∥ ≤ 2−n (∗∗)

Pick α > 0 s.t. exp(αT ) = 2. Then,

∀s ∈ [0, T ), 1 ≤ 2 exp(−αs) =⇒ ∀s ∈ [0, T ), 2−n ≤ 2 exp(−α(s+ nT ))

Combining this with the upper bound on the norm of the state transition matrix in (∗∗), we have that

∀s ∈ [0, T ),∀n = 1, 2, . . . , ∥Φ(s+ t0 + nT, t0)∥ ≤ 2 exp(−α(s+ nT ))

Now, using a. and the fact that 1 ≤ 2 exp(−αs), we have that

∀s ∈ [0, T ), ∥Φ(s+ t0, t0)∥ ≤ k ≤ 2k exp(−αs)

so that
∀t ≥ t0, ∥Φ(t, t0)∥ ≤ 2k exp(−α(t− t0))

1.2 Stability of Discrete Time Linear Systems

Consider the LTV discrete time system given by

xk+1 = Akxk +Bkuk

yk = Ckxk +Dkuk

The zero state is again the equilibrium for this system—i.e., x∗ = 0.

Recall from Module 1 (this is a link, btw) that the solution solution and output are given by

xk = Φ(k, k0)x0 +

k−1∑
ℓ=k0

Φ(k, ℓ+ 1)Bℓuℓ

yk = CkΦ(k, k0)x0 + Ck

(
k−1∑
ℓ=k0

Φ(k, ℓ+ 1)Bℓuℓ

)
+Dkuk

https://ratlifflj.github.io/W22-547/lectures/1.pdf
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Asymptotic stability can be characterized informally by the statement that every solution of xk+1 = Akxk
tends to zero as k → ∞.

Definition 5 (Asymptotic Stability). Consider xk ≡ 0 (i.e., the zero solution of xk+1 = Akxk). The zero
solution is asymptotically stable if and only if for all x0 ∈ Rn, for all k0 ∈ N,

a. k 7→ xk = Φ(k, k0)x0 is bounded on k ≥ k0

b. k 7→ xk = Φ(k, k0)x0 → 0 as k → ∞.

Note that any solution xk on any [k0, k] is a finite set and hence, item b. =⇒ item a.

Due to linearity, we get the following theorem.

Theorem 6 (Asymptotic Stability of Linear DT Systems). Let det(Ak) ̸= 0 for all k ∈ N. The zero solution
of xk+1 = Akxk on k ≥ 0 is asymptotically stable if and only if Φ(k, 0) → 0 as k → ∞.

Practice Problem. Try to prove this theorem by following the same proof structure as Theorem 2. Hint:
not that since det(Ak) ̸= 0, ∀k ≥ k0 ≥ 0, Φ(k, k0) = Φ(k, 0)Φ(0, k0).

Analogous to the continuous time case, exponential stability is a property of the system xk+1 = Akxk which
if possessed, guarantees that every solution of the system is bounded by a decaying exponential depending
on the elapsed time k − k0. Indeed, we have the following formal definition.

Definition 7 (DT Exponential Stability). The zero solution of xk+1 = Akxk on k ≥ 0 is exponentially
stable if and only if ∃ ρ ∈ [0, 1) and m > 0 such that for all k0 ∈ N,

∥Φ(k, k0)∥ ≤ mρk−k0 , ∀ k ≥ k0

where the matrix norm is arbitrary.2

The following are important observations:

• The constants ρ ∈ [0, 1) and m > 0 are fixed, meaning that they are independent of k0. Further, the
constant α ≥ 0 such that ρ = exp(−α) is the exponential decay rate.

• An equivalent statement: the zero solution is exponentially stable if and only if

∃ρ ∈ [0, 1), m > 0 : ∀(x0, k0) ∈ Rn × N, ∥xk∥ ≤ m∥x0∥ρk−k0 , ∀k ≥ k0

We say that the zero solution is uniformly asymptotically stable if and only if

a. k 7→ xk = Φ(k, k0)x0 on k ≥ k0 is uniformly bounded (bound is independent of k0)

b. k 7→ xk = Φ(k, k0)x0 → 0 uniformly as k → ∞.

Theorem 8 (Equivalence of Asymptotic and Exponenital Stability).

A(·) is uniformly asymptotically stable ⇐⇒ A(·) is exponentially stable

Practice Problem. Prove this theorem. Hint: use the same method as in the CT case. In the necessity
direction use a. and b. with 2ε = 1 and pick ρ ∈ [0, 1) such that 2ρK > 1 so that ∥Φ(k, k0)∥ ≤ 2ℓρk−k0

for all k ≥ k0.

2Recall from [510] that finite dimensional norms are equivalent.
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2 M2-RL2: Spectral Conditions for Stability of LTI Systems

In the case of LTI systems, characterization of stability reduces to analyzing spectral conditions. For this
we need to remind ourselves of some of the results from [510] (link to notes)on functions of a matrix.

Recall from [510] that we have the following result about representing any analytic function3 as a sum of
polynomials.

Let A ∈ Cn×n and let spec(A) denote the spectrum of A (containing distinct eigenvalues of A) with p =
|spec(A)|. The minimal polynomial of A is given as above by

ψA(λ) =

p∏
i=1

(λ− λi)
mi

Facts about functions of a matrix. Let f(s) be any function of s analytic on the spectrum of A and q(s)
be a polynomial such that

f (k)(λℓ) = q(k)(λℓ)

for 0 ≤ k ≤ mℓ − 1 and 1 ≤ ℓ ≤ p. Then
f(A) = q(A)

where p is the number of distinct roots of the characteristic polynomial χA(s) and

mk = min{µ ≥ 1 : N ((A− λkI)
µ) = N ((A− λkI)

µ+1)}

i.e., mk is the ascent of A− Iλk.

In fact, if m =
∑p

i=1mi then
q(s) = a1s

m−1 + a2s
m−2 + · · ·+ ams

p

where a1, a2, . . . , an are functions of

(f(λ1), f
(1)(λ1), f

(2)(λ1), . . . , f
(m1)(λ1), f(λ2), . . .)

and hence

f(A) = a1A
m−1 + · · ·+ amA

0 =

p∑
ℓ=1

mℓ−1∑
k=0

qk,ℓ(A)f
(k)(λℓ)

where qk,ℓ’s are polynomials independent of f .

This leads to the following theorem.

Theorem 9 (General Form of f(A)). Let A ∈ Cn×n have a minimal polynomial ψA given by

ψA(s) =

p∏
k=1

(s− λk)
mk

Let the domain ∆ contain spec(A), then for any analytic function f : ∆ → C. we have

f(A) =

p∑
k=1

mk−1∑
ℓ=0

f (ℓ)(λk)qk,ℓ(A)

where qk,ℓ’s are polynomials independent of f .

3An analytic function is a function that is locally given by a convergent power series—i.e., f is real analytic on an open set
U in the real line if for any x0 ∈ U one can write

f(x) =
∑∞

n=0 an(x− x0)n

where an ∈ R for each n and the series is convergent to f(x) for xin a neighborhood of x0.

https://faculty.washington.edu/ratliffl/teaching/2020_MathematicalFoundations.pdf
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Recalling our derivation of functions of matrices from [510], we can show that

exp(tA) =

p∑
k=1

mk−1∑
ℓ=0

tℓ exp(λkt)pkℓ(A)

This gives rise to the following stability condition:

Proposition 10 (Continuous Time). Consider the differential equation ẋ = Ax, x(0) = x0. From the above
expression:

{exp(At) → 0 as t→ ∞} ⇐⇒ {∀λk ∈ spec(A), Re(λk) < 0}

and

{t 7→ exp(At) is bounded on R+} ⇐⇒
{

∀λk ∈ spec(A), Re(λk) < 0 &
mk = 1 when Re(λk) = 0

}

We have a similar situation for discrete time systems:

∀ ν ∈ N, Aν =

p∑
k=1

mk−1∑
ℓ=1

ν(ν − 1) · · · (ν − ℓ+ 1)λν−ℓ
k pkℓ(A)

The above gives rise to the following stability condition:

Proposition 11 (Discrete Time). Consider the discrete time system x(k + 1) = Ax(k), k ∈ N, with
x(0) = x0. Then for k ∈ N, x(k) = Akx0. From the above equation, we have that{

Ak → 0 as k → ∞
}
⇐⇒ {∀ λi ∈ spec(A), |λi| < 1}

and {
k → Ak is bounded on N+

}
⇐⇒

{
∀λi ∈ spec(A), |λi| ≤ 1 &
mi = 1 when |λi| = 1

}

2.1 LTI: Asymptotic Stability is Equivalent to Exponential Stability

Coming back to the CT case, we will show that asymptotic stability is equivalent to exponentially stable
using the function of matrix expansion.

Let’s prove the claim in Proposition 10:

Claim 1.
ẋ = Ax is exponentially stable ⇐⇒ spec(A) ⊂ C◦

−

Proof. The state transition matrix for an LTI system is

Φ(t, t0) = exp(A(t− t0))

And from above we know that

exp(At) =

p∑
k=1

πk(t) exp(λkt), {λk}p1 = spec(A)

where πk are some matrix polynomials in t. Hence, by taking matrix norms, we have that

∥ exp(At)∥ ≤
p∑

k=1

∥πk(t)∥ exp(Re(λk)t) ≤
p∑

k=1

pk(t) exp(Re(λk)t) ≤ p(t) exp(−µt)
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where pk(t) are polynomials such that ∥πk(t)∥ ≤ pk(t), p(t) =
∑p

k=1 pk(t) ≥ 0 and

µ = −max{Re(λ) : λ ∈ spec(A)}

Since a polynomial is growing slower than any growing exponential we have

∀ε > 0, ∃ m(ε) > 0 : 0 ≤ |p(t)| ≤ m exp(εt), ∀t ≥ 0

Hence combing this with the above bound on ∥ exp(At)∥, we have that

∀ε > 0 ∃ m(ε) > 0 : ∥ exp(At)∥ ≤ m exp(−(µ− ε)t) ∀t ≥ 0

Then, if spec(A) ⊂ C◦
−, by the above µ > 0. Hence picking ε ∈ (0, µ) we have that

∥Φ(t, t0)∥ ≤ m exp(−α(t− t0))

with α = µ− ε > 0. On the other hand if spec(A) is not included in C◦
−, then by the polynomial expansion

for exp(At), exp(At) does not tend to the zero matrix as t → ∞ and the zero solution is not exponentially
stable.

In the subsequent subsections we will explore this notion of assessing stability of linear system via the spectral
properties of the dynamics A by way of two important applications of the theory:

1. M2-RL2a Numerical Integration: Choosing a stepsize to ensure stability.

2. M2-RL2b Nonlinear system stability by linearizing.

2.2 M2-RL2a: Application to Numerical Integration

Suppose we are given ẋ = Ax, x(0) = x0, A ∈ Cn×n, x ∈ Cn. Call t 7→ x(t) the exact solution x(t) =
exp(At)x0. Note that t 7→ x(t) is analytic in t. Call (ξ0, ξ1, . . .) the sequence of computed values.

There are many numerical integration schemes. We will focus on two first order schemes: forward and
backward Euler. These two schemes connect to stability very nicely.

Scheme 1: Forward Euler Method. For small h > 0, we have for any tk ∈ R+,

x(tk + h) = x(tk) + hẋ(tk) + O(h2)

= x(tk) + hAx(tk) + O(h2)

In other words, we have approximately

x(tk + h) ≃ (I + hA)x(tk)

So if we perform repeatedly this step starting at t0 = 0, we have the computed sequence {ξi}∞0 by

ξm = (I + hA)mx0, m = 0, 1, 2, . . .

From the spectral mapping theorem and the above equation for ξm we have the following.

Example. Consider the scalar dynamical system

ẋ(t) = λx(t)
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with λ ∈ C. Then the equation is stable if Re(λ) ≤ 0. In this case the system is exponentially decaying

lim
t→∞

x(t) = 0

When is the numerical solution xi also decaying—i.e., when is limi→∞ xi = 0? First, the forward Euler
numerical solution is given by the following recursion where h is the step-size:

xk+1 = xk + hλxk

Iterating the recursion, we have that
xk+1 = (1 + hλ)k+1x0

The solution is decaying (stable) if |1 + hλ| ≤ 1. That is, for any step-size choice h > 0 such that

(1 + hRe(λ))2 + Im(λ)2 ≤ 1

1 + 2hRe(λ)) + h2Re(λ))2 + h2Im(λ)2 ≤ 1 ⇐⇒ 2hRe(λ)) + h2(Re(λ))2 + Im(λ)2) ≤ 0

⇐⇒ h(2Re(λ) + h|λ|2) ≤ 0

⇐⇒ h ≤ −2
Re(λ)

|λ|2

⇐⇒ 0 ≤ h ≤ 2|Re(λ)|
|λ|2

, when system is stable—i.e., λ < 0.

Another way to think about this is letting z = λh so that we have the following constraint:

1 + 2x+ x2 ≤ 1

which gives us the circle shown in the figure below (right).

Im(z)

Re(z)

i

−i

−2

hλ

Forward Euler

Fact 12. Suppose spec(A) ⊂ C◦
− (equivalently, the origin is exponentially stable). Let h0 be the largest

positive h such that
max

λ∈spec(A)
|1 + hλ| = 1

Under these conditions,

1. The iterates ξm are such that {ξm}∞0 → 0 exponentially for all ξ0 if and only if h ∈ (0, h0).

2. If h > h0, then for almost all x0, the sequence of computed values {ξk}∞0 is such that {∥ξm∥}∞0 grows
exponentially.

Interpretation. Even if spec(A) ⊂ C◦
− (and hence the exact solution x(t) → 0 exponentially), for h > h0,

for almost all x0, the sequence of computed vectors {∥ξm∥}∞0 blows up. It is for this reason that in practice
we often prefer the backward Euler method.
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Scheme 2: Backward Euler. For small h > 0, we have that for any tk ∈ R,

x(tk) = x(tk + h)− hẋ(tk + h) + O(h2)

= x(tk + h)− hAx(tk + h) + O(h2)

Thus we have approximately
x(tk + h) ≃ (I − hA)−1x(tk)

So if we perform repeatedly this step, starting from t0 = 0, we get the computed sequence {ξi}∞0 given by

ξm = (I − hA)−mx0, m = 0, 1, 2, . . .

Now, the spectrum of (I − hA)−1 is {(1− hλi)
−1}σi=1. Hence by the above expression for ξm, we have

ξm → 0 as m→ ∞
⇐⇒ ∀λi ∈ spec(A), |(1− hλi)

−1| < 1

⇐⇒ ∀λi ∈ spec(A), |1− hλi| > 1

Note that if Re(λi) < 0, then |1− hλi| > 1, since h > 0. Thus we have shown the following result.

Example. Consider again the scalar linear dynamical system given by

ẋ(t) = λx(t)

with λ ∈ C. Then the equation is stable if Re(λ) ≤ 0. In this case the system is exponentially decaying

lim
t→∞

x(t) = 0

When is the numerically solution xi also decaying, limi→∞ xi = 0?

xi+1 = xi + hλxi+1 ⇐⇒ xi+1 =

(
1

1− hλ

)i+1

x0

The solution is decaying (stable) if |1 + hλ| ≥ 1. Indeed, letting z = hλ the above constraint is basically
saying

1 + 2z + z2 ≥ 1

which is illustrated in the figure below.

Im(z)

Re(z)

i

−i

2

hλ

Backward Euler

Fact 13. If spec(A) ⊂ C◦
−, then for all h > 0, for all x0 ∈ Cn, the computed sequence {ξm}∞0 obtained via

backward Euler goes to zero exponentially.

This is very important in practice, because if h is unfortunately chosen too large the computed sequence
may lose accuracy but at least it will never blow up!
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2.3 M2-RL2b: Stability of Nonlinear Systems

Last time we talked about internal or Lyapunov stability. Our focus was on linear dynamical systems but
this is an important concept for nonlinear systems as well.

Consider the nonlinear system
ẋ = f(x) (2)

where f ∈ C1(Rn,R), V ∈ C1(Rn,R). The flow of (2)—i.e., ϕt—is the solution of the ODE starting from
the initial state x at time t0. An equilibrium (or critical) point is a point x∗ such that

ẋ = f(x∗) = 0.

As we saw last time, the linearization around an equilibrium point x∗ is given by

ẋ = Df(x∗)x. (3)

Notation: Let Bδ(x) denote the δ-radius ball around x defined using the Euclidean distance—i.e.,

Bδ(x) := {y ∈ Rn| ∥x− y∥2 ≤ δ}.

Recall from Module 1 that ϕt(x) denotes the flow of the ODE given in (2) and its definition is summarized
below.

Definition 14 (Flow). The state of the system (2) at time t starting from x at time zero (without loss of
generality) is called the flow and is denoted ϕt(x).

Definition 15 (Stability). An equilibrium point x∗ of (2) is uniformly stable if for all ε > 0 and t0 ≥ 0, there
exists a δ(ε) > 0 such that for all x ∈ Bδ(x

∗) and t ≥ t0 we have that

ϕt(x) ∈ Bε(x
∗).

Moreover, an equilibrium point x∗ is asymptotically stable if it is stable and if there exists a δ > 0 such that

∀x ∈ Bδ(x
∗), lim

t→∞
ϕt(x) = x∗.

The above definition in words is stating that a a point is stable if for all initial conditions in a neighborhood
around the equilibrium x∗, the state of the system (flow) remain nearby. Further, stability is upgraded
(strengthened) to asymptotic stability if the flow asymptotically converges to the equilibrium. Figure 1
provides an illustration.

Bε(x
∗)

ε

Bδ(x
∗)

δ(ε)
x∗

x

ϕt(x)

Figure 1: Illustration of Definition 15: as illustrated by the black line, the flow ϕt(x) from x eventually ends
up in Bε(x

∗), and the dashed lined illustrates asymptotic stability (i.e., limt→∞ ϕt(x) = x∗).

https://ratlifflj.github.io/W22-547/lectures/1.pdf
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Lyapunov Functions for Nonlinear Stability. The existence of a Lyapunov function is a one way to
prove stability. For a dynamical system, ẋ = f(x) with x∗ = 0 as an equilibrium point, a scalar function
V : Rn → R is a Lyapunov function if it is C1, locally positive definite, and V̇ ≤ 0 where V̇ is the derivative
of the scalar function V (x) along trajectories (the solution) ϕt(x) and is given by

V̇ (x) =
d

dt
V (ϕt(x)) =

∂V (ϕt)

∂ϕt

d

dt
ϕt(x) = DV (x)f(x).

Positive definite means
V (z) ≥ 0,

all sublevel sets are bounded (i.e. V (z) → ∞ as z → ∞), and

V (z) = 0 ⇐⇒ z = 0.

Recall that sublevel sets of a function V are defined as follows: the α-sublevel set of V is given by

{x ∈ Rn| V (x) ≤ α}.

V (x) = 3

V (x) = 2
V (x) = 1

x

ϕt(x)

x∗

Figure 2: Example: (left) Illustration of a ”toy” Lyapunov function and its contours; (right) Visualization
of level sets V (x) = 1, V (x) = 2, and V (x) = 3 for a Lyapunov function V . If a state trajectory enters one
of these sets, it has to stay inside it since V̇ (x) ≤ 0.

Theorem 16 (Lyapynov Theorem). Consider the dynamical system defined by f ∈ C1(Rn,R). Let W be
an open subset of Rn containing the equilibrium point x∗—i.e., f(x∗) = 0. Suppose that there exists a real-
valued function V ∈ C1 such that V (x∗) = 0 and V (x) > 0 when x ̸= x∗. Then, the following implications
hold:

a. V̇ (x) ≤ 0, ∀x ∈W =⇒ x∗ is stable.

b. V̇ (x) < 0, ∀x ∈W\{x∗} =⇒ x∗ is asymptotically stable.

c. V̇ (x) > 0, ∀x ∈W\{x∗} =⇒ x∗ is unstable.

It can be difficult to construct a Lyapunov function for nonlinear systems. Hence, an alternative is to
assess stability in terms of the local linearized dynamics about equilirbium points (cf. Hartman Grobman
Theorem).

2.4 Stability of Linearized Systems

Consider a general non-linear system
ẋ = f(x), x ∈ Rn
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with an equilibrium point x∗ such that f(x∗) = 0. Recall that the local linearization around x∗ is given by

˙̃x = Ax̃

with x̃ = x − x∗ and A := Df(x∗). The following theorem is the celebrated Hartman-Grobman theorem
which states that trajectories of the nonlinear system are ”equivalent” to trajectories of the linearization
in a neighborhood of an equilibrium, and hence we can assess (local) stability of the nonlinear system by
assessing stability of the linearized system.4

Theorem 17 (Hartman-Grobman). Consider a nonlinear dynamical system ẋ = f(x) with an equilibrium
point x∗ (i.e. f(x∗) = 0). If the linearization of the system A := Dxf(x)|x=x∗ has no zero or purely imaginary
eigenvalues then there exists a homeomorphism (i.e., a continuous map with a continuous inverse) from a
neighborhood U of x∗ into Rn,

h : U → Rn,

taking trajectories of the nonlinear system ẋ = f(x) and mapping them onto those of ˙̃x = Ax̃. In particular,
we have that x∗ maps to the equilibrium of the linearized system—i.e., h(x∗) = 0.

The above theorem directly translates to the following corollary.

Corollary 18. Suppose that f ∈ C2(Rn,R). If the linearized system is exponentially stable, then there
exists a ball B ⊂ Rn around x∗ and constants c, λ > 0 such that for every solution x(t) to the nonlinear
system that starts at x(t0) ∈ B, we have

∥x(t)− x∗∥ ≤ ce−λ(t−t0)∥x(t0)− x∗∥.

This means that the properties of the linearized system are preserved in the nonlinear system.

Conversely, instability is also a property that is preserved.

Theorem 19. Suppose that f ∈ C2(Rn,R). If the linearized system is unstable, then there are solutions
that start arbitrarily close to x∗ but do not converge to this point as t→ ∞.

Caution: marginal stability is not a transferable property.

Example 20 (Marginal Stability is Not Transferable). The two systems

ẋ = ±x3

(one for “+” one for “−”) have the same local linearization ˙̃x = 0 around x∗ = 0 which is only marginally
stable. However ẋ = −x3 is such that x always converges to zero, while for ẋ = x3, x always diverges away
from the equilibrium point.

2.4.1 Application to Inverted Pendulum

Let’s consider the inverted pendulum. I encourage you to play around with this in Python as well; a Jupyter
Notebook is provided here on the course website.

The inverted pendulum has dynamics

mℓ2θ̈ = mgℓ sin θ − bθ̇ + u

Letting x1 = θ and x2 = θ̇, we have that

ẋ1 = θ̇ = x2

ẋ2 = θ̈ =
g

ℓ
sin(x1)−

b

mℓ2
x2 +

1

mℓ2
τ

4If you are interested in learning more about nonlinear systems, I suggest Shankar Sastry’s book ”Nonlinear Systems” [1].

https://ratlifflj.github.io/W22-547/jpyntbks/stability/


Module 2: Stability 15

And suppose that b/(2mℓ) < g and that we observe x1 = θ, the angle. That is,

y(t) = g(x, u) = x1

Consider the equilibrium resulting from applying u∗ = τ . There are two equilibrium of this system

{x| x1 = π or x1 = 0}

Now, we linearize by computing

A := Dxf(x, u)|x∗,u∗ =

[
0 I

g
ℓ cos(x1) − b

mℓ2

] ∣∣∣∣
x=x∗,u=u∗

, B := Duf(x, u)|x∗,u∗ , C := Dxg(x, u)|x∗,u∗

The local linearization of this system around the equilibrium point for which x1 = π is given by

˙̃x = Ax̃+Bu

ỹ = Cx̃
(4)

where x̃ := δx and with

A :=

[
0 1
− g

ℓ − b
mℓ2

]
, B := Duf(x, u)|x1=π,u=τ =

[
0
1

mℓ2

]
, C := Dxg(x, u)|x1=π,u=τ =

[
1 0

]
The eigenvalues of A are given by

det(λI −A) = λ

(
λ+

b

mℓ2

)
+
g

ℓ
⇐⇒ λ = − b

2mℓ2
±
√

b

2mℓ2
− g

ℓ

So, the linearized system is exponentially stable. Indeed, since b/(2mℓ) < g, the λ’s have negative real part.

What about for the other equilibrium x∗ = 0? For this case, the A matrix is given by

A :=

[
0 1
g
ℓ − b

mℓ2

]
so that the eigenvalues in this case are

λ = − b

2mℓ2
±
√

b

2mℓ2
+
g

ℓ
.

Hence, we deduce

− b

2mℓ2
+

√
b

2mℓ2
+
g

ℓ
> 0 =⇒ unstable

3 M2-RL3: Lyapunov Stability via Lyapunov’s Equation

References. As a reminder, you can refer to the following textbook references:
• Chapter 8 [JH];

• Chapter 7/7d, [C&D];

• [510]: review your notes on norms including (induced) matrix norms.

Recall from M2-RL2 that we defined the concept of a Lypunov function and used it as a certificate for
stability (cf. Theorem 16). We noted that for nonlinear systems it can be difficult to construct a Lyapunov
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function. There is a lot of guess work and intuition that can go into it and some computational tools such
as sums-of-squares polynomial tools to generate Lyapunov functions.5

For linear systems, it turns out that Lyapunov functions take the form

V (z) = z⊤Pz

for some positive definite symmetric matrix P ≻ 0.

Recall the definition of a positive definite matrix (cf. [510] lecture notes for more detail).

Definition 21 (Positive Definite Matrix). A matrix Q ∈ Rn×n is positive semi-definite (PSD) if

x⊤Qx ≥ 0, ∀ x ∈ Rn/{0}

and it is called positive definite (PD) if the inequality is strict.

Note that in general we apply this definition to any matrix Q ∈ Rn×n as stated in the definition, meaning
that Q does not need to be symmetric for this definition to apply. However, in this class we define Lyapunov
functions in terms of positive definite and symmetric matrices—i.e., where Q = Q⊤ ≻ 0.

The following proposition (cf. [510] notes) is also useful to recall.

Proposition 22. Consider a symmetric matrix Q = Q⊤ ∈ Rn×n. The following are equivalent:

a. The matrix Q is positive definite—i.e., Q ≻ 0.

b. The spectrum of Q contains only strictly positive real numbers—i.e., spec(Q) ⊂ R>0.

c. The determinants of all upper left submatrices of Q are positive.

d. There exists an n× n non-singular real matrix H such that Q = H⊤H.

For a positive definite symmetric matrix Q = Q⊤ ≻ 0, we also have that

0 < λmin(Q)∥x∥2 ≤ x⊤Qx ≤ λmax(Q)∥x∥2, ∀x ̸= 0.

The Lyapunov stability theorem provides an alternative condition to check whether or not the continuous-
time homogeneous LTI system

ẋ = Ax (5)

is asymptotically stable.

The equation
A⊤P + PA+Q = 0

is called the Lyapunov equation. Here, the matrices P,Q ∈ Rn×n are symmetric. For a linear system
ẋ = Ax, if

V (z) = z⊤Pz

then
V̇ (z) = (Az)⊤Pz + z⊤P (Az) = −z⊤Qz

That is, if z⊤Pz is the (generalized) energy, then z⊤Qz is the associated (generalized) dissipation.

If P ≻ 0, then the sublevel sets6 of this function are ellipsoids and bounded. Further, we have that

V (z) = z⊤Pz = 0 ⇐⇒ z = 0.

If P ≻ 0, Q ⪰ 0, then all the trajectories of ẋ = Ax are bounded (i.e., Re(λi) ≤ 0 and if Re(λi) = 0, then λi
corresponds to a Jordan block of size one). Further, the ellipsoids {z| z⊤Pz ≤ a} are invariant sets.

5If you are interested in exploring this further there is a nice discussion and set of colab notebooks available here.
6i.e., {x| V (x) < a}

http://underactuated.mit.edu/lyapunov.html
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Theorem 23. The following conditions are equivalent:

a. The system (5) is asymptotically (equivalently exponentially) stable.

b. All the eigenvalues of A have strictly negative real parts.

c. For every symmetric positive definite matrix Q = Q⊤ ≻ 0, there exists a unique solution P to the
Lyapunov equation

A⊤P + PA = −Q.
Moreover, P is symmetric and positive-definite—i.e., P = P⊤ ≻ 0—and is given by

P =

∫ ∞

0

eA
⊤tQeAt dt.

d. There exists a symmetric positive-definite matrix P = P⊤ ≻ 0 for which the following Lyapunov matrix
inequality holds:

A⊤P + PA < 0

Proof. Proof Sketch. We have already seen that items a and b are equivalent (cf. M2-RL2). To show that b
implies c, we need to show that

P =

∫ ∞

0

eA
⊤tQeAt dt

is the unique solution to A⊤P + PA = −Q. This can be done by showing that the following are true:

1. the integral is well-defined (i.e. finite),

2. P as defined solves A⊤P + PA = −Q,

3. P as defined is symmetric and positive definite, and

4. no other matrix solves the equation.

Indeed, let us show each of these properties holds.

1. This follows from exponential stability—i.e.

∥eA
⊤tQeAt∥op → 0

exponentially fast as t→ ∞. Hence, the integral is absolutely convergent.

2. We simply need to check by direct verification. Plugging P into the left-hand side of the Lyapunov
equation, we have that

A⊤P + PA =

∫ ∞

0

A⊤eA
⊤tQeAt + eA

⊤tQeAtA dt

We also have that
d

dt

(
eA

⊤tQeAt
)
= A⊤eA

⊤tQeAt + eA
⊤tQeAtA

so that

A⊤P + PA =

∫ ∞

0

d

dt

(
eA

⊤tQeAt
)
dt =

(
eA

⊤tQeAt
) ∣∣∣∞

t=0
=
(
lim
t→∞

eA
⊤tQeAt

)
− eA

⊤0QeA0

And, the right-hand side is equal to −Q since limt→∞ eAt = 0 (by asymptotic stability) and eA0 = I.

3. This also follows by direct computation. Symmetry easily follows:

P⊤ =

∫ ∞

0

(eA
⊤tQeAt)⊤ dt =

∫ ∞

0

(
eAt
)⊤
Q⊤

(
eA

⊤t
)⊤

dt =

∫ ∞

0

eA
⊤tQeAt dt = P

To check positive definiteness, pick an arbitrary vector z and compute:

z⊤Pz =

∫ ∞

0

z⊤eA
⊤tQeAtz dt =

∫ ∞

0

w(t)⊤Qw(t) dt
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where w(t) = eAtz. Since Q is positive definite, we get that z⊤Pz ≥ 0. Moreover

z⊤Pz = 0 =⇒
∫ ∞

0

w(t)⊤Qw(t) dt = 0

which only happens if w(t) = eAtz = 0 for all t ≥ 0, from which one concludes that z = 0, because eAt

is non-singular (recall that all state transition matrices are non-singular!). Thus P is positive definite.

4. We argue this by prove by contradiction.

Assume there are matrices P̄ , P with P ̸= P̄ that both solve the Lypunov equation:

A⊤P + PA = −Q, and A⊤P̄ + P̄A = −Q

Then
A⊤(P − P̄ ) + (P − P̄ )A = 0

Multiplying by eA
⊤t and eAt on the left and right, respectively, we conclude that

eA
⊤tA⊤(P − P̄ )eAt + eA

⊤t(P − P̄ )AeAt = 0, ∀ t ≥ 0

Yet, it is also the case that

d

dt

(
eA

⊤t(P − P̄ )eAt
)
= eA

⊤tA⊤(P − P̄ )eAt + eA
⊤t(P − P̄ )AeAt = 0

implying that eA
⊤t(P − P̄ )eAt must be constant. But,because of stability, this quantity must converge

to zero as t→ ∞, so it must be always zero. Since eAt is nonsingular, this is possible only if P = P̄ .

The implication that item c =⇒ item d follows immediately, because if we select Q = −I in condition c,
then the matrix P that solves the Lyapunov equation also satisfies A⊤P + PA < 0.

Now one way to complete the proof is to show that item d implies item b. Indeed, let P be a symmetric
positive-definite matrix for which

A⊤P + PA < 0 (6)

holds and define
Q = −(A⊤P + PA)

Consider an arbitrary solution to the LTI system and define the scalar time-dependent map

v(t) = x⊤(t)Px(t) ≥ 0

Taking derivatives, we have

v̇ = ẋ⊤Px+ x⊤Pẋ = x⊤(A⊤P + PA)x = −x⊤Qx ≤ 0

Thus, v(t) is nonincreasing and we conclude that

v(t) = x⊤(t)Px(t) ≤ v(0) = x⊤(0)Px(0)

But since v = x⊤Px ≥ λmin(P )∥x∥2 we have that

∥x∥2 ≤ x⊤(t)Px(t)

λmin(P )
=

v(t)

λmin(P )
≤ v(0)

λmin(P )

which means that the system is stable (since the trajectories are bounded). To verify that it is actually
exponentially stable, we go back to the derivative of v, and using the facts that x⊤Qx ≥ λmin(Q)∥x∥2 and
v = x⊤Px ≤ λmax(P )∥x∥2, we get that

v̇ = −x⊤Qx ≤ −λmin(Q)∥x∥2 ≤ − λmin(Q)

λmax(P )
v, ∀ t ≥ 0

To finish we need a comparison lemma. Comparison results are commonly used analysis tools in control
theory and hence, it is worth think a bit about them to better understand their utility.
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Lemma 24 (Comparison Lemma). Let v(t) be a differentiable scalar signal. For some constant µ ∈ R,

v̇ ≤ µv(t), ∀t ≥ t0 =⇒ v(t) ≤ eµ(t−t0)v(t0), ∀t ≥ t0

Applying this lemma, we get that

v(t) ≤ e−λ(t−t0)v(t0), ∀t ≥ 0, λ = − λmin(Q)

λmax(P )

which shows that v(t) converges to zero exponentially fast and so does ∥x(t)∥.

Analogous Conditions for DT Linear Systems. There are discrete time versions of the above results.
Indeed, consider

xk+1 = Axk

then we have a similar theorem.

Theorem 25 (DT Lyapunov Stability). The following four conditions are equivalent:

a. The DT LTI system is asymptotically (exponentially) stable.

b. All the eigenvalues of A have magnitude strictly smaller than 1.

c. For every symmetric positive definite Q, there exists a unique solution P to the following Stein equation
(aka the discrete-time Lyapunov equation):

A⊤PA− P = −Q

Moreover, P is symmetric and positive-definite.

d. There exists a symmetric positive-definite matrix P for which the following Lyapunov matrix inequality
holds:

A⊤PA− P < 0

Question: Can you construct an analogous proof?

3.1 The Lyapunov Operator

The Lypunov operator is defined by
L(P ) = A⊤P + PA

Recall that in [510] you saw that the eigenvalues of this operator are (λi + λj) where λi, λj are eigenvalues
of A. Hence, we have the following result.

Proposition 26. L is non-singular if and only if A and −A share no common eigenvalues.

As a consequence of this proposition, we have the following facts.

Fact. If A is stable, then the Lyapunov operator is non-singular. If A has imaginary eigenvalues, then
the Lyapunov operator is singular (since they have to come in complex conjugate pairs). Thus if A is
stable, for any Q there is exactly one solution P of Lyapunov equation A⊤P + PA+Q = 0.

If A is stable, and P is a unique solution of A⊤P + PA+Q = 0, then

V (z) = z⊤Pz = z⊤
(∫ ∞

0

etA
⊤
QetA dt

)
z =

∫ ∞

0

x(t)⊤Qx(t) dt
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The interpretation of this is that V (z) is a cost-to-go from point z given no input.

As in the above proof, if A is stable and Q > 0, then for each t

etA
⊤
QetA > 0

so that

P =

∫ ∞

0

etA
⊤
QetA dt > 0

This means that if A is stable, we can choose any positive definite quadratic form z⊤Qz as the dissipation,
i.e. −V̇ = z⊤Qz. Then, we can solve a set of linear equations to find the unique quadratic function form
V (z) = z⊤Pz. And, V will be positive definite so it is a Lyapunov function that proves A is stable.

Conclusion. That is, a linear system is stable if and only if there is a quadratic Lyapunov function that
proves it.

3.2 Other applications of Lyapunov functions

We can use the Lyapunov equation to assess state feedback. This is explored in the Jupyter Notebook on
stability for the linearized pendulum system which you can find here on the course website. Consider

ẋ = Ax+Bu, y = Cx, u = Kx, x(0) = x0

If we apply the state-feedback input u = Kx, then we get closed loop dynamics

ẋ = (A+BK)x

Suppose the closed loop dynamics ẋ = (A+BK)x are stable. That is, the matrix A+BK is Hurwitz stable
meaning its eigenvalues lie in the open left half complex plane.

Then, to evaluate quadratic integral performance measures

Ju =

∫ ∞

0

u(t)⊤u(t) dt, Jy =

∫ ∞

0

y(t)⊤y(t) dt

(which are basically the energy of the input and the energy of the output) we can solve Lyapunov equations

(A+BK)⊤Pu + Pu(A+BK) +K⊤K = 0

and
(A+BK)⊤Py + Py(A+BK) + C⊤C = 0

so that we have
Ju = x⊤0 Pux0, Jy = x⊤0 Pyx0

Indeed,

Ju =

∫ ∞

0

u(t)⊤u(t) dt =

∫ ∞

0

x(t)⊤K⊤Kx(t) dt

and if we think about this as being our Lyapunov function, that is

Ju(t) = z⊤Puz =

∫ ∞

0

x(t)⊤K⊤Kx(t) dt

Then, we simply need to solve for Pu using the above Lyapunov equation and then evaluate at z = x0.
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