
EE/AA 547 W22 HW 1 Instructor: LJ Ratliff

All hw should be uploaded to canvas as a *pdf*. Make sure that if you scan your handwritten
notes that they are legible and appropriately oriented. If you use an online resource to solve
any problem, please appropriately cite that source.

Problem 1. (Lipschitz.) One of the key assumptions required for existence and uniqueness of
solutions to differential equations is the Lipschitz condition on the dynamics with respect to the
state-variable argument—i.e., we need the dynamics to be sufficiently regular. Consider the follow-
ing systems of differential equations:

S1 =

{
ẋ1 = −x1 + et cos(x1 − x2)
ẋ2 = −x2 + 15 sin(x1 − x2)

S2 =

{
ẋ1 = −x1 + x1x2
ẋ2 = −x2

a. Do they satisfy a global Lipschitz condition? Why? Provide a formal proof or counter
example.

b. Let ϕ(t) be the solution of S2 due to the initial condition x0 at t0 = 0. Your friend says that ϕ
is uniquely defined on R+ and for all x0 ∈ R2, ϕ(t) → 0 as t → ∞. Do you agree or disagree?
Why? Provide a formal justification for your answer.

Problem 2.(Perturbed nonlinear systems.) Suppose that some physical system obeys the differential
equation

ẋ = f(x, t), x(t0) = x0, ∀t ≥ t0

where f(·, ·) obeys the conditions of the fundamental theorem. Suppose that as a result of some
perturbation the equation becomes

ż(t) = f(z, t) + g(t), z(t0) = x0 + δx0, ∀t ≥ t0

Given that for t ∈ [t0, t0 + T ], ∥g(t)∥ ≤ ε1 and ∥δx0∥ ≤ ε0, find a bound on ∥x(t)− z(t)∥ valid on
[t0, t0 + T ].
Hint: Compare the norm of the difference of the two solutions, and revisit the proof of existence
and uniqueness of ODEs provided in the lecture notes (or Appendix B, [C&D]).

Problem 3. (State transition matrix properties.)

a. For nonsingular M(t) ∈ Rn×n, determine an expression for

d

dt
M−1(t)

b. Now, using part a. find and expression for

d

dτ
Φ(t, τ)

where Φ(t, τ) is the state transition matrix of ẋ = A(t)x. Hint: state transition matrices are
non-singular and hence, invertible.
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Note: while this problem appears abstract, we will actually see that this expression for ODE
d
dτΦ(t, τ) (i.e., the derivative is with respect to the second argument) is important for understand-
ing not only stablity (see next problem) but also for understanding how to run the ODE in reverse
time, and in particular is important for connecting reachability (from the origin) and controllability
(to the origin) which are part of [Module 3].

Problem 4.(Matrix Differential Equations and Lyapunov Stability.) Let ẋ = A(t)x be exponentially
stable, and define

P (t) =

∫ ∞

t
Φ(τ, t)∗Φ(τ, t) dτ, ∀t ≥ 0

where Φ(t, t0) is the state transition matrix for ẋ = A(t)x. Exponential stability is needed for P (t)
to be well defined. Use the previous problem to show that this P (t) is in fact the solution to the
matrix differential equation

Ṗ (t) = −A(t)∗P (t)− P (t)A(t)− I,

and show that P (t)∗ = P (t).

Note. Why is this important? What this shows is that the time derivative of

v(x, t) = x⊤P (t)x

is decreasing along trajectories. Indeed,

v̇(x, t) = ẋ⊤P (t)x+ x⊤Ṗ (t)x+ x⊤P (t)ẋ = x⊤(A(t)⊤P (t) + P (t)A(t) + Ṗ (t))x = −x⊤x ≤ 0

And hence, as long as v(t, x) is a positive definite function (which it is when A(t) is stable see
[C&D] Lemma 146 Chapter 7), then v(t, x) is a Lyapunov function for the system.

Problem 5. (T -Periodic Systems: Existence.) Consider the linear system

ẋ = Ax+ w(t)

where w(t) is T periodic—i.e. w(t + T ) = w(t) and in particular w(0) = w(T ). There exists a
T–periodic solution to this system, meaning there exists an x(0) such that x(t + T ) = x(t). Find
this solution by first determining x(0).

Problem 6. (Properties of State Transition Matrices.) Consider the differential equation

ẋ(t) = (A(t) +B(t))x(t), (1)

where A(·), B(·) ∈ PC(R+,Rn×n). Let ΦA(t, t0) be the state transition matrix corresponding to

ẋ = A(t)x, x(t0) = x0

and define
M(t) = ΦA(0, t)B(t)ΦA(t, 0).

Show that the state transition matrix of (1) is of the form

ΦA(t, 0)ΦM (t, t0)ΦA(0, t0)

where ΦM is the state transition matrix corresponding to ż(t) = M(t)z(t).
Hint: We showed this same result in class but for the linear time invariant case.
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