
EE/AA 547 W22 HW 4 Instructor: LJ Ratliff

All hw should be uploaded to canvas as a *pdf*. Make sure that if you scan your handwritten
notes that they are legible and appropriately oriented. If you use an online resource to solve
any problem, please appropriately cite that source.

Problem 1. (Comparison Lemma) The following is a useful result in LQR and is used to prove
that the LQR cost to go at time t = 0 is minimal. Prove the following statement: If W ≥ 0 and
Q2 ≥ Q1 ≥ 0 then P1 and P2 are such that P2 ≥ P1 if A−WP2 is asymptotically stable where P1

and P2 are solutions to

A⊤P1 + P1A− P1WP1 +Q1 = 0

A⊤P2 + P2A− P2WP2 +Q2 = 0,

Solution. This is called the comparison lemma. Such comparisons are often made in stability
analysis for dynamical systems amongst other analyses. First, observe that

A⊤P1 + P1A− P1WP1 +Q1 = (A−WP2)
⊤P1 + P1(A−WP2) + P2WP2

+Q1 − (P1 − P2)S(P1 − P2)

and

A⊤P2 + P2A− P2WP2 +Q2 = (A−WP2)
⊤P2 + P2(A−WP2) + P2WP2 +Q2

Subtracting the above equations we get a Lyapunov equation:

(A−WP2)
⊤∆P +∆P (A−WP2) + ∆Q

where
∆P = X2 −X1

and
∆Q = Q2 = Q1 + (P1 − P2)W (P1 − P2)

Since ∆Q ≥ 0, if A−WP2 is Hurwitz (stable) we conclude that ∆P ≥ 0 so that P2 ≥ P1.
Problem 2. (LQR Implementation) Consider controlling a satellite in circular orbit. The satellite is
of mass m with thrust in the radial direction u1 and in the tangential direction u2. In cylindrical
coordinates the dynamics are

m(r̈ − rθ̇2) = u1 −
km

r2

m(2ṙθ̇ + rθ̈) = u2

a. What is the state space representation of this system?

b. Find the equilibria (i.e., where r̈ = θ̈ = 0) when u1 = 0 = u2. Linearize about the equilibrium
where ṙ = 0.

c. Given m = 100kg, an equilibrium radius 6.37 × 103 + 300km (first term is the radius of the
earth) and k = GM where G = 6.673 × 10−11 is the universal gravitational constant and
M = 5.98×1024 is the mass of the earth, find the solution to the minimum norm control plus
state LQR problem with R = ρI where ρ = 1e6 and Q = I. submit your Python notebook.
Plot the state trajectories of the system and the control input overtime.
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Solution.

a. Let

x =


r
θ
ṙ

θ̇


so that

ẋ =


x3
x4

x1x
2
4 − k

x2
1

−2x3x4
x1

+


0 0
0 0
1
m 0
0 1

mx1

[
u1
u2

]

b. With r̈ = θ̈ = 0 and ui = 0, to find an equilibrium we need to solve

x1x
2
4 −

k

x1
= 0, −2x3

x4
x1

= 0

Doing so gives us that x3 = ṙ and or x4 = θ̇ = 0. Let x3 = 0 so that x1 = r̃ is some constant
and

x4 = θ̇ =

√
k

x31
= ω̃ =⇒ k = r̃3ω̃2

and x2 = θ = ω̃t. Linearizing we have that

x̃(t) =


r̃
ω̃t
0
ω̃

 ,

so that

˙̃x =


0 0 1 0
0 0 0 1

2k
r̃3

+ ω̃2 0 0 2r̃ω̃

0 0 −2 ω̃
r̃ 0

 =


0 0 1 0
0 0 0 1

3ω̃2 0 0 2r̃ω̃

0 0 −2 ω̃
r̃ 0

 x̃+


0 0
0 0
1
m 0
0 1

mr̃

[
u1
u2

]

If we looking at the satellite (from the earth) we can say that we can observe r and θ̇ (distance
and angular speed) so that

y =

[
1 0 0 0
0 0 0 1

]
x̃

c. see Python notebook

Problem 3. (Hewer’s Algorithm) Consider the LQR problem

J(x0, u) =

∞∑
n=0

x⊤nC
⊤Cxn + u⊤nRun

with
xn+1 = Axn +Bun
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where R > 0 and C⊤C > 0. We know the optimal feedback law is

u∗(x) = −(B⊤PB +R)−1B⊤PAxn

where P is the unique positive definite solution of

P = A⊤PA−A⊤PB(B⊤PB +R)−1B⊤PA+ C⊤C

Let Vk, k = 0, 1, . . ., be the solutions of the equation

Vk = (Ak)
⊤VkAk + L⊤

k RLk + C⊤C

where
Lk = (B⊤Vk−1B +R)−1B⊤Vk−1A, k = 1, 2, . . .

and
Ak = A−BLk, k = 0, 1, 2, . . .

and L0 is chosen such that A0 is a stability matrix. Prove the following statement:

K ≤ Vk+1 ≤ Vk · · · , k = 0, 1, . . .

and
lim
k→∞

Vk = K

Solution. Since A0 is a stability matrix, we know that

V0 =

∞∑
ℓ=0

(A⊤
0 )

ℓ(L⊤
0 RL0 + C⊤C)Aℓ

0

is unique and positive definite and solves the recursion

Vk = (Ak)
⊤VkAk + L⊤

k RLk + C⊤C (∗)

Let L1 be defined by the above expression for Lk and consider the identity

A⊤
0 V0A0 + L⊤

0 RL0 = A⊤
1 V0A1 + L⊤

1 RL1 + (L1 − L0)
⊤(B⊤V0B +R)(L1 − L0) (∗∗)

(i.e. like the comparison lemma above). Then by this expression V0 also satisfies

V0 = A⊤
1 V0A1 +M

where
M = C⊤C + L⊤

1 RL1 + (L1 − L0)
⊤(B⊤V0B +R)(L1 − L0) > 0

Since this implies that A1 is a stability matrix, the unique positive definite solution V1 of (∗) exists.
Using (∗∗) with V0 and V1 given by (∗) we have

V1 − V0 =

∞∑
n=0

(An
0 )

⊤(L0 − L1)
⊤(B⊤V0B +R)(L0 − L1)A

n
0 ≥ 0

and hence V1 ≤ V0. (we are basically applying the comparison lemma). Now, let L∗ = (B⊤KB +
R)−1B⊤KA which is well defined by the choice of R. By employing an identity similar to (∗∗) we
get

V1 −K =

∞∑
n=0

(An
0 )

⊤(L0 − L∗)⊤(B⊤KB +R)(L0 − L∗)An
0 ≥ 0
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so that
V1 ≥ K.

Hence V1 is also bounded below and therefore has finite norm. Thus A1 has eigenvalues with
negative real parts, and so V1 satisfies (∗) with k = 1. Repeating the above argument for k = 2, 3, . . .
yields the desired result. Now

lim
k→∞

Vk = V∞

exists (by the monotonic convergence theorem for positive operators) so that by taking the limit
of (∗) as k → ∞ we get the typical discrete time steady state Riccati equation which agrees with
our construction of L∗ in terms of K.
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