
EE/AA 547 W22 HW 3 Updated Instructor: LJ Ratliff

All hw should be uploaded to canvas as a *pdf*. Make sure that if you scan your handwritten
notes that they are legible and appropriately oriented. If you use an online resource to solve
any problem, please appropriately cite that source.

Problem 1. (State vs. Output Feedback.) Consider a dynamical system

ẋ = Ax+Bu

y = Cx

where

A =

[
0 1
7 −4

]
, B =

[
1
2

]
, C =

[
1 3

]
and the two possible control inputs

a. u = −[f1 f2]x

b. u = −ky

For each of the two control inputs above, derive a state space representation of the resulting closed
loop system, and determine the characteristic equation of the resulting closed loop system matrix
Acl.

Solution.

a. The closed loop A is given by

Acl = A−B
[
f1 f2

]
=

[
−f1 1− f2

7− 2f1 −4− 2f2

]
The characteristic equation is

χAcl
(s) = s2 + (4 + 2f2 + f1)s+ 6f1 + 7f2 − 7

The state space representation is then

ẋ =

[
−f1 1− f2

7− 2f1 −4− 2f2

]
x

y =
[
1 3

]
x

b. The closed loop A is given by

Acl = A− kBC =

[
−k 1− 3k

7− 2k −4− 6k

]
and the characteristic equation is

χAcl
(s) = s2 + (7k + 4)s+ 27k − 7

The state space representation is then

ẋ =

[
−k 1− 3k

7− 2k −4− 6k

]
x

y =
[
1 3

]
x
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Problem 2. (LTV Controllability.) Given a linear time varying system (A(·), B(·), C(·), D(·)), show
that if (A(·), B(·), C(·), D(·)) is completely controllable on [t0, t1], then (A(·), B(·), C(·), D(·)) is
completely controllable on any [t′0, t

′
1], where t′0 ≤ t0 < t1 ≤ t′1. Show that this is no longer true

when the interval [t0, t1] is not a subset of [t′0, t
′
1].

Solution. Recall that Φ(t, τ) is always invertible. To steer the system from x to y on [t′0, t
′
1] where

[t0, t1] ⊂ [t′0, t
′
1], choose an input that steers the system from Φ(t0, t

′
0)x to Φ(t′1, t1)

−1y on [t0, t1].
As a counter example for the case when [t0, t1] is not a subset of [t′0, t

′
1], consider a controllable

system for which B(σ) ≡ 0 for σ ∈ [t′0, t
′
1].

Problem 3. (Echo Canceller.) This problem addresses the design of a chip that is used to cancel
echo on your telephone line. The echo y(t) ∈ R is represented as the linear combinations of delayed
versions of your spoken (message signal) m(t) as follows:

y(t) =

N∑
i=1

aim(t− i)

where t is a discrete time variable, representing the sampling rate of the voice signal (around 125
micro seconds). The coefficients ai ∈ R model the characteristics of the line. These are assumed
unknown when you pick up the telephone at t = 0, but you have estimates of them denoted âi(t).
The aim of the echo canceller is to update the estimates using the measurement of the echo y(t),
and the prediction error

e(t) = y(t)−
N∑
i=1

âim(t− i)

Note that it will take N seconds after you pick up the phone to get all the m(t− i), thus the echo
canceller is initialized with m(−1) = m(−2) = · · · = m(−N + 1) = 0.

a. For this problem, set the echo canceller up as an observability problem, with the vector
a ∈ RN representing the unknown (but constant) state vector to be estimated, no input, and
y(t) as the output function. Remember as you construct the corresponding matrices for the
observability problem, that this is a discrete time system.

b. Find â(1) so that it is the vector closest to â(0) in norm, that gives the correct value of y(1).

c. Try to make this recursive, so that you can determine â(t+ 1) from â(t), y(t).

Solution. Let t be a discrete time variable, y[t] =
∑N

i=1 aim[t− i] and e[t] := y[t]−
∑N

i=1 âim[t− i].
Let the echo canceller be initialized with m[−1] = m[2] = · · · = m[−N + 1] = 0.

a. The state space model is: a[t + 1] = I · a[t] and y[t] = C[t]a[t] = [m[t − 1] · · · m[t −
N ]][a1[t] · · · aN [t]]T . Now, the observability map is defined by Lo = C(·)Φ(·, t) = C[·] since
Φ(·, t) = I. Using L∗

o, given y[t] we can uniquely recover the state:

L∗
o

 y[t]
...

y[t+N ]

 = L∗
o

 C[t]
...

C[t+N ]

x[t]
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b. To find â[1] that is the vector closest to â[0] in norm that gives the correct value of y[1], we
need e[1] = 0 and ∥â[1]− â[0]∥ needs to be minimized. If we consider e[1] = 0, we get

0 = e[1] = y[1]−
N∑
i=1

âim[1− i] = y[1]−m[0]â1[1]

since m[−1] = m[2] = · · · = m[−N + 1] = 0. Thus, â1[1] =
y[1]
m[0] . Now, assuming a given â[0],

â1[1]− â1[0] =
y[1]
m[0] − â1[0]. So, in order to minimize the norm ∥â[1]− â[0]∥, we can set âi[1]

equal to âi[0] for all i ∈ {2, . . . , N} and â1[1]− â1[0] =
y[1]
m[0] − â1[0].

c. Now, to set this up as a recursive problem, at each time step we can update the corresponding
entry of â. As seen in part b, the initialization allows us to do this. So, consider t = 2. Then
we want e[1] = e[2] = 0 and ∥â[2] − â[1]∥ to be minimized. So, by part b, the condition

e[1] = 0 ⇒ â1[1] =
y[1]
m[0] . And, 0 = e[2] = y[2]− â1[2]m[1]− â2[2]m[0] ⇒ â2[2] =

y[2]−â1[2]m[1]
m[0] .

In order to minimize the norm, we have the following conditions: âi[2] = âi[1] if i ̸= 2 and

â2[2] =
y[2]− â1[1]m[1]

m[0]

(note that â1[2] = â1[2]). This allows us to set up a recursive formula for estimating â[t+ 1]
from â[t] and y[t]: âi[t+ 1] = âi[t] if i ̸= (t+ 1) and

âi[t+ 1] =
y[t+ 1]−

∑t
j=1m[(t+ 1)− j]âj [t]

m[0]

if i = (t+ 1)

Problem 4. (LTV Observability.) Consider the not necessarily observable LTV system

ẋ = A(t)x(t)

y(t) = C(t)x(t)

with initial condition x0 at time 0.

a. Suppose we observe output y(t) over the interval [0, t1]. Under what conditions can we
determine the initial state x0? Justify your answer and provide an expression for x0.

b. Consider the measure of the energy of the output defined by ∥y∥2. Provide an expression for
the energy in terms of x0.

c. Consider all initial conditions x0 such that ∥x0∥ = 1. Is it possible for ∥y∥2 to be zero? Justify
your answer.

Solution.

a. We may solve for the state x(t) to get

x(t) = Φ(t, t0)x0

The output is simply y(t) = C(t)Φ(t, t0)x0. In order to determine the initial state x0, we
need only to ensure that y(t) ∈ R(C(t)Φ(t, t0)) for all t ∈ [0, t1]. Let us define the operator
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L0 : x0 7→ C(t)Φ(t, t0)x0. Then x0 may be determined iff y(t) ∈ R(L0) for all t ∈ [0, t1]. To
derive an expression for x0, we start with L0x0 = y and

L0x0 = y =⇒ L∗
0L0x0 = L∗

0y =⇒ x0 = (L∗
0L0)

−1L∗
0y

And, x0 is unique if N (L∗
0L0) = {0}.

b. The energy of the output is given by

⟨y, y⟩ = x∗0W0(t0, t1)x0

where

W0(t0, t1) =

∫ t1

t0

Φ∗(τ, t0)C
∗(τ)C(τ)Φ(τ, t0) dτ

c. First, the observability gramian W0(t0, t1) is positive semi-definite. If (A,C) were observable,
then this gramian would be positive definite and the energy would never be zero for ∥x0∥ = 1.
However, since (A,C) is not necessarily obserable, it is possible for x0 to lie in the nullspace
of W0 leading to zero energy. Mathematically,

∥y∥2 = ⟨y, y⟩ = x∗0W0(t0, t1)x0 ≤ ∥x∗0∥W0(t0, t1)∥∥x0∥ = ∥W0(t0, t1)∥

When is the right-hand side zero? Since W0(t0, t1) ≥ 0, the only way for W0(t0, t1) = 0 is for it
to have a non-trivial null space which occurs for x0 unobservable since N (W0(t0, t1)) = N (L0)
which is possible if the system is not observable.

Problem 5. (How does state feedback impact observability?) Consider the system[
ẋ1
ẋ2

]
=

[
−2 1
1 0

] [
x1
x2

]
+

[
1
0

]
u

y =
[
1 2

] [x1
x2

]
and assume that you would like to design a feedback controller of the form u = −Fx+ r, where r
is a reference input signal.

a. Show that the system is observable.

b. Show that there exists a state feedback gain matrix F =
[
f1 f2

]
such that the closed loop

system resulting from setting u = −Fx+ r is not observable.

c. Now, compute a matrix F of the form F =
[
1 f2

]
such that the closed loop system (as in

part 2) is not observable.

d. The transfer function of a system is

H(s) = C(s− IA)−1B

By comparing the open loop transfer function with the transfer function of the closed loop
system of part c., state what this unobservability is due to?

Solution.
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a. Since the system is LTI and x ∈ R2 so that n = 2, we can consider the following observability
matrix:

O =

[
C
CA

]
=

[
1 2
0 1

]
Now, rankO = 2 = n so that the system is observable.

b. If we let the state feedback be u = −Fx+r with F = [f1 f2], then we have ẋ = (A−bF )x+br
where

A− bF =

[
−2− f1 1− f2

1 0

]
Now, from lecture we have the following theorem: The LTI system is (completely observable)
CO on some [0,∆] ⇔ rankO = n. So, we must consider the following O:

O =

[
C

C(A− bF )

]
=

[
1 2

−f1 1− f2

]
Considering the converse of the theorem, we have that the feedback system is not observable
⇔ 1− f2 + 2f1 = 0 (i.e. if the determinant is 0 then O is not of full rank).

c. Now, let F = [−1 − f2]. The closed-loop system will not be observable if 1 = f2 using the
above condition.

d. If we consider F = [−1 − 1], the closed loop dynamics are

Acl = A− bF =

[
−1 2
1 0

]
so that

ẋ =

[
−1 2
1 0

]
x+

[
1
0

]
r

y =
[
12
]
x

Then the closed loop transfer function is

H(s) = C(sI −Acl)
−1B =

s+ 2

s2 + s− 2
=

s+ 2

(s− 1)(s+ 2)
=

1

s− 1

and the open-loop transfer function is

H(s) =
s+ 2

s2 + 2s− 1

The pole-zero cancellation in the closed loop system makes it so that we cannot observe the
state completely.

Problem 6. (Connections between Lyapunov and Observability.) Suppose that A,Q ∈ Fn×n are given.
Assume that A is stable and Q = Q∗ ≥ 0. Prove the following claim:
The pair (A,Q) is observable if and only if

X =

∫ ∞

0
eA

∗τQeAτ dτ > 0
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Solution.(=⇒): Suppose that X is not positive definite. We know just by the construction of X
that it is at least positive semi-definite. So if it is not positive definite, then there exists some
x0 ̸= 0 such that x∗0Xx0 = 0. Using the integral form for X, since A is stable by assumption, and
the fact that Q ≥ 0, we have that∫ ∞

0
x0e

AT τQT/2Q1/2eAτx0 dτ =

∫ ∞

0

∥∥∥Q1/2eAτx0

∥∥∥2 dτ = 0

The integrand is non-negative and continuous, hence it must be zero for all τ ≥ 0. Thus, QeAtx0 = 0
for all t ≥ 0. Then using the infinite series expansion for eAt and Cayley-Hamilton, we have that

eAt =

∞∑
k=0

Aktk

k!
=

n−1∑
k=0

αk(t)A
k

so that

QeAtx0 =

n−1∑
k=0

αk(t)QAkx0 = 0, ∀t ≥ 0

which in turn says that QAkx0 = 0 for each k ∈ {0, . . . , n− 1}. Hence, (A,Q) is not observable.

(⇐=): Again suppose not. Then there is an x0 ̸= 0 such that

QeAtx0 = 0, ∀t ≥ 0

(by the same argument used in the conclusion of the preceding argument). Consequently, x∗0e
A∗tQeAtx0 =

0 for all t ≥ 0. Integrating gives us

0 =

∫ ∞

0
(x∗0e

A∗tQeAtx0) dt = x∗0

(∫ ∞

0
eA

∗tQeAt dt

)
x0 = x∗0Xx0

Since x0 ̸= 0, X is not positive definite.

6


