EE445 Mod4-Section2: Convexity II

References: [Optimization Models: Calafiore \& El Ghaoui] Chapter 8

Convex Hull

From Wikipedia:
The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space.

Equivalently as the set of all convex combinations of points in the subset.
For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.

Exercise 1 - Convex Hull

Question What is the convex hull (in \mathbf{R}^{2}) of the points $e_{1}, e_{2},-e_{1},-e_{2}$ (where e_{i} is the i th coordinate vector)? Draw a picture and name the set.

Convex functions

From last lecture: $f: \mathbf{R}^{n} \mapsto \mathbf{R}$ is a convex function if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for all $x, y \in \mathbf{R}^{n}$ and all $0 \leq \lambda \leq 1$.

1 st and 2 nd order convexity condition

1st-order condition: differentiable f with convex domain is convex iff

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

2nd-order conditions: for twice differentiable f with convex domain f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

Tools to show convexity

practical methods for establishing convexity of a function

1. verify the definition: show for all $x, y \in \operatorname{dom} f$ and all $0 \leq \lambda \leq 1$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

2. for twice differentiable functions, show $\nabla^{2} f(x) \succeq 0$
3. show that f is obtained from simple convex functions by operations that preserve convexity:

- nonnegative weighted sum
- composition with affine function
- pointwise maximum
- partial minimization

Properties that preserve convexity

Positive Weighted Sum: αf is convex if f is convex, $\alpha \geq 0$
$f_{1}+f_{2}$ convex if f_{1}, f_{2} convex
Composition with affine function: Consider the affine function $x \mapsto A x+b$, with $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$, then the function $g(x)=f(A x+b)$ is a convex function if f is convex.

Pointwise maximum If f_{1}, \ldots, f_{m} are convex, then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is convex.

Partial minimization if $f(x, y)$ is convex in (x, y) (note that this means jointly convex in the variables) and C is a convex set, then

$$
g(x)=\min _{y \in C} f(x, y)
$$

is also convex

Exercise 2 - Minimum-weight path in a graph

Consider a weighted graph $G=(V, E)$ where V is the set of vertices and E the set of edges, and each edge i has a weight $w_{i} \geq 0$. Then the weight of a path from vertex $s \in V$ to $t \in V$ is equal to the sum of the weights of the edges along that path. Show that the weight of the minimum-weight path between vertices s and t is a concave function of the weights w_{i}.

Exercise 3

Question Show that the sum of the r largest entries of a vector x is convex.

