EE445 Mod4-Lec1: Convexity and Convex Sets

References: [Optimization Models: Calafiore \& EI Ghaoui] Chapter 8

Optimization: Overview

A general optimization problem has the form

```
minimize}\mp@subsup{}{x}{}\quad\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq\mp@subsup{b}{i}{},\quadi=1,\ldots,m
```

with components

- $x=\left(x_{1}, \ldots, x_{n}\right)$ - optimization variable
- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ - objective function
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ - constraint functions; b_{i} - constraint bounds

Optimization: Problem Classes

An important class: convex optimization problems
"With only a bit of exaggeration, we can say that if you formulate a practical problem as a convex optimization problem, then you have solved the original problem."

Quote from: S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Convex sets

$S \subseteq \mathbf{R}^{n}$ is a convex set if

$$
x, y \in S, \quad \lambda, \mu \geq 0, \quad \lambda+\mu=1 \Longrightarrow \lambda x+\mu y \in S
$$

or equivalently,

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

geometrically: $x, y \in S \Rightarrow$ segment $[x, y] \subseteq S$
Examples:

1. Hyperplanes and halfspaces
2. Euclidean balls

3. Ellipsoids

Exercise 1

Exercise 2

Question Show that the intersection of convex sets is convex.

Showing convexity using properties: Exercise 3

A wedge, that is, $\left\{x \in \mathbf{R}^{n} \mid a^{T} x \leq b, c^{T} x \leq d\right\}$.

Showing convexity using properties: Exercise 4

The set of points closer (in Euclidean norm) to a point a than a point b, i.e., $\left\{x \in \mathbf{R}^{n} \mid\|x-a\|_{2} \leq\|x-b\|_{2}\right\}$.

Exercise 5

Question Consider the set defined by the following inequalities

$$
\left(x_{1} \geq x_{2}-1 \text { and } x_{2} \geq 0\right) \text { or }\left(x_{1} \leq x_{2}-1 \text { and } x_{2} \leq 0\right)
$$

Is the set convex?

Convex functions

From last lecture: $f: \mathbf{R}^{n} \mapsto \mathbf{R}$ is a convex function if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for all $x, y \in \mathbf{R}^{n}$ and all $0 \leq \lambda \leq 1$.

Exercise 6: Convexity using definition

Question

$$
f(x)=\|A x-b\|_{2}
$$

Exercise 7: Quadratic-over-linear:

Question $f(x, y)=x^{2} / y$ Hint: Check using the Hessian condition.

Quad-over-linear: Solution

$$
\nabla^{2} f(x, y)=\frac{2}{y^{3}}\left[\begin{array}{cc}
y^{2} & -x y \\
-x y & x^{2}
\end{array}\right]=\frac{2}{y^{3}}\left[\begin{array}{c}
y \\
-x
\end{array}\right]\left[\begin{array}{c}
y \\
-x
\end{array}\right]^{T} \succeq 0
$$

convex for $y>0$.

