EE445 Section: Principal Component Analysis

Curse of dimensionality

From Wiki:

When the dimensionality increases, the volume of the space increases so fast that the available data become sparse.

In order to obtain a reliable result, the amount of data needed often grows exponentially with the dimensionality. Also, organizing and searching data often relies on detecting areas where objects form groups with similar properties; in high dimensional data, however, all objects appear to be sparse and dissimilar in many ways, which prevents common data organization strategies from being efficient.

Dimensionality Reduction - Toy Example

Curse of dimensionality manifests

| | Red | Maroon | Pink | Flamingo | Blue | Turquoise | Seaweed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Ocean

Dim reduction

	Red	Blue
Red	1.00	0
Maroon	1.20	-0.10
Pink	1.00	0.20
Flamingo	0.80	0
Blue	0	1.00
Turquoise	0.25	0.90
Seaweed	0.15	1.00
Ocean	-0.10	1.20

1. Visualization
2. Bias-variance tradeoff (remember the polynomial fitting?)

Concept Review

Eigenvalues, Spectral Decomposition

Eigenvalue: A nonzero vector x satisfying $A x=\lambda x$ is a (right) eigenvector for the eigenvalue λ.

Spectral Decomposition Every symmetric matrix A can be diagonalized as $A=V \Lambda V^{\top}$ with V formed by the orthonormal eigenvectors of A and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ a diagonal matrix of the eigenvalues of A

$$
A=\underbrace{\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & \cdots & \mid
\end{array}\right]}_{V} \underbrace{\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \lambda_{n-1} & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{ccc}
- & v_{1}^{\top} & - \\
\vdots & \vdots & \vdots \\
- & v_{n}^{\top} & -
\end{array}\right]}_{V^{\top}}
$$

Singular Value Decomposition

For an arbitrary (non-symmetric) matrix A, we cannot compute the spectral decomposition. But there are two related symmetric matrices: $A A^{\top}$ and $A^{\top} A$.

Geometric View of SVD

PCA: Data Preprocessing

Let $\left(z^{(1)}, \ldots, z^{(m)}\right)$ be the original raw data, then preprocessing goes as follows:

1. Let $\mu=\frac{1}{m} \sum_{i=1}^{m} z^{(i)}$
2. Define $\tilde{x}^{(i)}=z^{(i)}-\mu$
3. Let $\sigma_{j}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(\tilde{x}_{j}^{(i)}\right)^{2}$
4. Define $x^{(i)}=\left(\tilde{x}_{1}^{(i)} / \sigma_{1}, \ldots, \tilde{x}_{n}^{(i)} / \sigma_{n}\right)$

- Steps 1-2 zero out the mean of the data
- Steps 3-4 rescale each coordinate to have unit variance, which ensures that different attributes are all treated on the same "scale."

PCA Optimization

Recall The length of the projection of x onto u is given by $x^{\top} u$.
Optimization To maximize the variance of the projections, we choose a unit-length u to maximize

$$
\frac{1}{m} \sum_{i=1}^{m}\left(\left(x^{(i)}\right)^{\top} u\right)^{2}=\frac{1}{m} \sum_{i=1}^{m} u^{\top} x^{(i)}\left(x^{(i)}\right)^{\top} u=u^{\top} \underbrace{\left(\sum_{i=1}^{m} x^{(i)}\left(x^{(i)}\right)^{\top}\right)}_{=: \Sigma=X^{\top} X} u
$$

Covariance matrix Note that $\Sigma=X^{\top} X$ where

$$
X=\left[\begin{array}{ccc}
- & \left(x^{(1)}\right)^{\top} & - \\
& \cdots & \\
- & \left(x^{(m)}\right)^{\top} & -
\end{array}\right]
$$

PCA Solution

Rewrite optimization

$$
\max _{u}\|X u\|^{2} \text { subject to }\|u\|^{2}-1=0 \quad \text { (note that }\|X u\|^{2}=u^{\top} \Sigma u \text {) }
$$

Solve via Lagrangian

To solve, we write out the "Lagrangian".

$$
\begin{gathered}
\mathcal{L}(u, \lambda)=\|X u\|^{2}-\lambda\left(\|u\|^{2}-1\right)=u^{\top} \Sigma u-\lambda\left(u^{\top} u-1\right) \\
\nabla_{u} \mathcal{L}=2 \Sigma u-2 \lambda u=0 \Longrightarrow \Sigma u=\lambda u
\end{gathered}
$$

Interpretation

Hence, we choose an eigenvector u of Σ that chooses the largest eigenvalue. This is called the principal eigenvector, and is also the first right singular vector of X !!!

Practice Problem: PCA preserves inner products

Part (a):

Question What is the $i j_{t h}$ entry of the matrices $X X^{\top}$ and $X^{\top} X$? Express the matrix $X X^{\top}$ in terms of U and Σ, and, express the matrix $X^{\top} X$ in terms of Σ and V.

Part (b):

Define $\psi_{\mathrm{PCA}}(x)=\left(v_{1}^{\top} x, \ldots v_{k}^{\top} x\right)$.
Question Show that

$$
\psi_{\mathrm{PCA}}\left(\mathbf{x}_{i}\right)^{\top} \psi_{\mathrm{PCA}}\left(\mathbf{x}_{j}\right)=\mathbf{x}_{i}^{\top} \mathbf{V}_{k} \mathbf{V}_{k}^{\top} \mathbf{x}_{j} \quad \text { where } \quad \mathbf{V}_{k}=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{k}
\end{array}\right]
$$

Also show that $\mathbf{V}_{k} \mathbf{V}_{k}^{\top}=\mathbf{V} \mathbf{I}^{k} \mathbf{V}^{\top}$, where the matrix \mathbf{I}^{k} denotes a $d \times d$ diagonal matrix with first k diagonal entries as 1 and all other entries as zero.

Part (c)

Suppose that we know the first k singular values are the dominant singular values. In particular, we are given that

$$
\frac{\sum_{i=1}^{k} \sigma_{i}^{4}}{\sum_{i=1}^{d} \sigma_{i}^{4}} \geq 1-\epsilon
$$

for some $\epsilon \in(0,1)$. Then show that the PCA projection to the first k-right singular vectors preserves the inner products on average:

$$
\frac{1}{\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right)^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right)-\left(\psi_{\mathrm{PCA}}\left(\mathbf{x}_{i}\right)^{\top} \psi_{\mathrm{PCA}}\left(\mathbf{x}_{j}\right)\right)\right|^{2} \leq \epsilon
$$

Thus, we find that if there are dominant singular values, PCA projection can preserve the inner products on average. Hint: Using previous two parts and the definition of Frobenius norm might be useful.

PCA Numerical Example

