EE445 Section: Principal Component Analysis
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Curse of dimensionality

From Wiki:
When the dimensionality increases, the volume of the space increases so fast that

the available data become sparse.

In order to obtain a reliable result, the amount of data needed often grows
exponentially with the dimensionality. Also, organizing and searching data often
relies on detecting areas where objects form groups with similar properties; in high
dimensional data, however, all objects appear to be sparse and dissimilar in many
ways, which prevents common data organization strategies from being efficient.
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Dimensionality Reduction - Toy Example
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Curse of dimensionality manifests
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polynomial fitting?)
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Concept Review



Eigenvalues, Spectral Decomposition

Eigenvalue: A nonzero vector z satisfying Ax = Az is a ( right) eigenvector for the

eigenvalue \.

Spectral Decomposition Every symmetric matrix A can be diagonalized as A = VAV "
with V' formed by the orthonormal eigenvectors of A and A = diag(A1,...,\,) a diagonal
matrix of the eigenvalues of A
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Singular Value Decomposition

For an arbitrary (non-symmetric) matrix A, we cannot compute the spectral decomposition.
But there are two related symmetric matrices: AAT and AT A.
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Geometric View of SVD
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PCA: Data Preprocessing

Let (20, ..., 2(™)) be the original raw data, then preprocessing goes as follows:
1 Let p= 215" 20
2. Define () = 2(0) —
3. Leto? = Ly (a17)2

4. Define z() = (Cfigi)/Ul, . wfgzi)/‘fn)

® Steps 1-2 zero out the mean of the data
e Steps 3-4 rescale each coordinate to have unit variance, which ensures that different
attributes are all treated on the same “scale."
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PCA Optimization

Recall The length of the projection of z onto w is given by z .

Optimization To maximize the variance of the projections, we choose a unit-length u to
maximize
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Covariance matrix Note that ¥ = X T X where
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PCA Solution

Rewrite optimization
max || Xu||? subject to |Jul|> =1 =0 (note that | Xu|?> = u' Su)

u
Solve via Lagrangian
To solve, we write out the “Lagrangian".

£ N) = [ Xul? = Al = 1) = o Su— A@wu—1)
VL =2Yu—-2 u=0 = Yu=J\u

Interpretation

Hence, we choose an eigenvector u of X that chooses the largest eigenvalue. This is called
the principal eigenvector, and is also the first right singular vector of X!I!
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Practice Problem: PCA preserves inner products



Part (a):

Question What is the ij;), entry of the matrices XX " and X T X? Express the matrix
X X7 in terms of U and %, and, express the matrix X ' X in terms of ¥ and V.
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Part (b):

Define ¢pca(z) = (v] z,...v] x).
Question Show that

YPCA (xi)T Ypoa (x5) = XZTV;CV,IX]- where V= [ Vi Vo ... Vi } .

Also show that VkV,;r = VI*VT where the matrix I*¥ denotes a d x d diagonal matrix
with first k& diagonal entries as 1 and all other entries as zero.
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Part (c)

Suppose that we know the first & singular values are the dominant singular values. In
particular, we are given that

for some € € (0,1). Then show that the PCA projection to the first k-right singular vectors
preserves the inner products on average:

Thus, we find that if there are dominant singular values, PCA projection can preserve the
inner products on average. Hint: Using previous two parts and the definition of Frobenius
norm might be useful.
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PCA Numerical Example



