Section 3: Least Squares Modeling

Adhyyan Narang
April 8, 2022

Least Squares Review

Sometimes the system of equations

$$
A x=b
$$

has zero solutions. It may be of interest in applications to approximate a solution, which leads to the least squares problem.

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\|A x-b\|^{2} \tag{1}
\end{equation*}
$$

In lecture, we saw that the optimal solution to this problem is

$$
\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

This was derived by two methods: vector calculus and orthogonal projections.

Practice Problems

VMLS 12.7 Network Tomography

A network consists of n links, labeled $1, \ldots, n$. A path through the network is a subset of the links. (The order of the links on a path does not matter here.) Each link has a (positive) delay, which is the time it takes to traverse it. We let d denote the n-vector that gives the link delays. The total travel time of a path is the sum of the delays of the links on the path. Our goal is to estimate the link delays (i.e., the vector d), from a large number of (noisy) measurements of the travel times along different paths. This data is given to you as an $N \times n$ matrix P, where

$$
P_{i j}= \begin{cases}1 & \text { link } j \text { is on path } i \\ 0 & \text { otherwise }\end{cases}
$$

and an N-vector t whose entries are the (noisy) travel times along the N paths. You can assume that $N>n$. You will choose your estimate d by minimizing the RMS deviation between the measured travel times (t) and the travel times predicted by the sum of the link delays. Explain how to do this, and give a matrix expression for \hat{d}. If your expression requires assumptions about the data P or t, state them explicitly.

VMLS 12.1 Approximating a vector as a multiple of another one

In the special case $n=1$, the general least squares problem (12.1) reduces to finding a scalar x that minimizes $\|a x-b\|^{2}$, where a and b are m-vectors. (We write the matrix A here in lower case, since it is an m-vector.) Assuming a and b are nonzero, show that $\|a \hat{x}-b\|^{2}=\|b\|^{2}(\sin \theta)^{2}$, where $\theta=\angle(a, b)$. This shows that the optimal relative error in approximating one vector by a multiple of another one depends on their angle.

Jupyter Notebook

