
EE445 Mod4-Lec4: Convex Optimization Problems: ML

Models II

References: [Optimization Models] Chapter 8, sections 8.1-8.3 (except 8.2.3)
and Chapter 13 (sections 13.1, 13.2, 13.3.1-5)
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Topics for Module 4

• Lec1: Convex problems: convex sets and functions
• Lec2: Smooth unconstrained convex minimization & gradient descent
• Lec3 & 4: Convex Optimization Problems: ML models
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This lecture’s topics:
• Logistic Regression: derivation, properties, intuition, variations
• Penalty Function Approximation
• Other examples
• Wrap-up of Module 4
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Logistic Regression: Overview

• Data: Continuous features {ai} and discrete labels yi 2 {0, 1}

• Goal: Find linear predictor

x0 + x1ai =

(
positive ) yi = 1

negative ) yi = 0

• Approach: Combine Bernoulli model with a linear predictor

• Examples: Hours studied vs. Pass/Fail, measurements vs. disease
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Logistic Regression: Derivation

Rewriting the Bernoulli model in standard form,

P
⇣
(ai, yi); pi

⌘
= pyii (1� pi)

1�yi

= exp

✓
yi log

✓
pi

1� pi

◆
+ log(1� pi)

◆
,

we can model the term multiplying yi using our linear predictor,

log

✓
pi

1� pi

◆
= x0 + x1ai,

which gives us,
log (1� pi) = � log (1 + exp(x0 + x1ai)) .

Combining the above expressions gives the “likelihood function”:

L
⇣
x0, x1; (a, y)

⌘
=

mY

i=1

exp
⇣
yi(x0 + x1ai)� log

�
1 + exp(x0 + x1ai)

�⌘
.

[Lecturer: M. Fazel] [EE445 Mod4-L3] 5

point

thispage justfye

fortheith dat a eh

forall m datapoints



Logistic Regression: Derivation

We can fit our model parameters to the given data by maximizing the likelihood, or by
minimizing the negative log-likelihood:

� logL
⇣
x0, x1; (a, y)

⌘
=

mX

i=1

log
�
1 + exp(x0 + x1ai)

�
� yi(x0 + x1ai)

Explicitly, we solve the following problem

min
x0,x1

mX

i=1

log(1 + exp(x0 + x1ai))� yi(x0 + x1ai)
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Logistic Regression: Intuition and Properties

min
x0,x1

mX

i=1

log(1 + exp(x0 + x1ai))� yi(x0 + x1ai)

• If the label is 0, we want to make log(1 + exp(x0 + x1ai)) as small as possible,
equivalent to making x0 + x1ai ⌧ 0

• If the label is 1, can show objective decreases with respect to x0 + x1ai, so we want
x0 + x1ai � 0
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Logistic Regression: Intuition and Properties

• We look for intercept x0 and slope x1 that do the best job for all the data in the set.
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Logistic Regression: Intuition and Properties

• The logistic loss function

f(x0, x1) = �
mX

i=1

[log(1 + exp(x0 + x1ai))� yi(x0 + x1ai)]

is convex (see HW 5, P6)
• It is also differentiable, and ‘nice’ to solve, e.g., by gradient descent

(you will try this in the last Python notebook, to be posted today)
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Logistic Regression: Intuition and Properties

• logistic loss function

f(x0, x1) = �
mX

i=1

[log(1 + exp(x0 + x1ai))� yi(x0 + x1ai)]

• Sometimes a regularizer is added, e.g., r(x0, x1) = x20 + x21
• f(x) + r(x) is still convex (sum of two convex functions)

• For a future data point with feature a, we have p = exp(x0+x1a)
1+exp(x0+x1a)

• We can add convex constraints on parameters (e.g., upper/lower bounds on values,
x = (x0, x1) restricted to a ball, etc.
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(General) Norm Approximation Problems

minimize kAx� bk

(A 2 Rm⇥n with m � n, k · k is a norm on Rm)

• geometric interpretation of solution x? = argminx kAx� bk:
Ax? is point in R(A) closest to b

• estimation: linear measurement model

y = Ax+ v

y are measurements, x is unknown, v is measurement error
given y = b, best guess of x is x?

• optimal design: x are design variables (input), Ax is result (output)
x? is design that best approximates desired result b

[Lecturer: M. Fazel] [EE445 Mod4-L3] 12

1 men
forHanble

Attamufaccording tothenorm

or noise



Norm Approximation: Examples

• least-squares approximation (k · k2): solution satisfies

ATAx = AT b

(x? = (ATA)�1AT b if RankA = n)

• Chebyshev approximation (k · k1): can be solved as a Linear Program:

minimize t
subject to �t1 � Ax� b � t1

• sum of absolute residuals approximation (k · k1): can be solved as an Linear Program:

minimize 1T y
subject to �y � Ax� b � y
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Norm Approximation: Examples
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Penalty Function Approximation

minimize �(r1) + · · ·+ �(rm)
subject to r = Ax� b

(A 2 Rm⇥n, � : R ! R is a convex penalty function)

examples
• quadratic: �(u) = u2

• deadzone-linear with width a:

�(u) = max{0, |u|� a}

• log-barrier with limit a:

�(u) =

⇢
�a2 log(1� (ua )

2) |u| < a
1 else
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`2-norm vs `1-norm Penalties

example: histogram of residuals Ax� b (A is 200⇥80) for
xls = argmin kAx� bk2, x`1 = argmin kAx� bk1

Recall: similar intuition to regression with `1 regularization (last lecture)
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Convex Classification Problems

• classification: linear discrimination
• approximate linear discrimination of non-separable sets
• robust linear discrimination
• support vector machine
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Wrap up (of Module 4)

• Many real-world problems can be expressed as Convex optimization problems

• We focused on examples in ML, but also very common in:
signal processing (signal reconstruction, denoising), communication system design
(power allocation, rate allocation), feedback control design, mechanical systems design,
statisitics, finance,. . .

• The key is to recongnize when a problem can be cast or modeled as a convex one
I nontrivial, needs skill and practice!
I important to know basic convex sets/functions and properties that preserve convexity
I combine with linear algebra and spectral methods seen in Mod1-Mod 3
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Wrap up (of Module 4)

• Historically: the more people understood convexity, the more they looked for (and
found) convex problems

• Knowing about convexity can help even when your target problem isnot convex: convex
relaxations/approximations, convex subproblems,. . .

• We hope this glimpse into convexity motivates you to learn more:
grad courses, online material, book “Convex Optimization” by Boyd & Vandenberghe
(and many others)
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