EE445 Mod4-Lec4: Convex Optimization Problems: ML Models II

References: [Optimization Models] Chapter 8, sections 8.1-8.3 (except 8.2.3) and Chapter 13 (sections 13.1, 13.2, 13.3.1-5)

Topics for Module 4

- Lec1: Convex problems: convex sets and functions
- Lec2: Smooth unconstrained convex minimization \& gradient descent
- Lec3 \& 4: Convex Optimization Problems: ML models

This lecture's topics:

- Logistic Regression: derivation, properties, intuition, variations
- Penalty Function Approximation
- Other examples
- Wrap-up of Module 4

Logistic Regression: Overview

- Data: Continuous features $\left\{a_{i}\right\}$ and discrete labels $y_{i} \in\{0,1\}$
- Goal: Find linear predictor

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right] \in \mathbb{R}^{\mathbf{2}} \quad x_{0}+x_{1} a_{i}= \begin{cases}\text { positive } & \Rightarrow y_{i}=1 \\
\text { negative } & \Rightarrow y_{i}=0 \\
\hline\end{cases}
$$

- Approach: Combine Bernoulli model with a linear predictor
- Examples: Hours studied vs. Pass/Fail, measurements vs. disease

Logistic Regression: Derivation [this page : just FyI]

Rewriting the Bernoulli model in standard form, for the $i^{\text {th }}$ data

$$
\begin{aligned}
& \text { eth data } \quad P\left(\left(a_{i}, y_{i}\right) ; p_{i}\right)=p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}} \\
& \text { point: }
\end{aligned}
$$

$$
x=e^{\log x}
$$

$$
=\exp (y_{i} \underbrace{\log \left(\frac{p_{i}}{1-p_{i}}\right.})+\log \left(1-p_{i}\right)),
$$

we can model the term multiplying y_{i} using our linear predictor,

$$
\log \left(\frac{p_{i}}{1-p_{i}}\right)=x_{0}+x_{1} a_{i}
$$

which gives us,

$$
\log \left(1-p_{i}\right)=-\log \left(1+\exp \left(x_{0}+x_{1} a_{i}\right)\right)
$$

Combining the above expressions gives the "likelihood function": (for all m data points)

$$
\mathcal{L}\left(x_{0}, x_{1} ;(a, y)\right)=\prod_{i=1}^{m} \exp \left(y_{i}\left(x_{0}+x_{1} a_{i}\right)-\log \left(1+\exp \left(x_{0}+x_{1} a_{i}\right)\right)\right)
$$

Logistic Regression: Derivation

We can fit our model parameters to the given data by maximizing the likelihood, or by minimizing the negative log-likelihood:

$$
-\log \mathcal{L}\left(x_{0}, x_{1} ;(a, y)\right)=\sum_{i=1}^{m} \log \left(1+\exp \left(x_{0}+x_{1} a_{i}\right)\right)-y_{i}\left(x_{0}+x_{1} a_{i}\right)
$$

Explicitly, we solve the following problem

$$
\left\lceil\min _{x_{0}, x_{1}} \sum_{i=1}^{m} \log \left(1+\exp \left(x_{0}+x_{1} a_{i}\right)\right)-y_{i}\left(x_{0}+x_{1} a_{i}\right)\right.
$$

Logistic Regression: Intuition and Properties

$$
\min _{x_{0}, x_{1}} \sum_{i=1}^{m} \log \left(1+\exp \left(x_{0}+x_{1} a_{i}\right)\right)-y_{i}\left(x_{0}+x_{1} a_{i}\right)
$$

- If the label is 0 , we want to make $\log \left(1+\exp \left(x_{0}+x_{1} a_{i}\right)\right)$ as small as possible, equivalent to making $x_{0}+x_{1} a_{i} \ll 0$
- If the label is 1 , can show objective decreases with respect to $x_{0}+x_{1} a_{i}$, so we want $x_{0}+x_{1} a_{i} \gg \overline{0}$

Logistic Regression: Intuition and Properties

- We look for intercept x_{0} and slope x_{1} that do the best job for all the data in the set.

Logistic Regression: Intuition and Properties

- The logistic loss function

$$
f\left(x_{0}, x_{1}\right)=-\sum_{i=1}^{m}\left[\log \left(1+\exp \left(x_{0}+x_{1} a_{i}\right)\right)-y_{i}\left(x_{0}+x_{1} a_{i}\right)\right]
$$

is convex (see HW 5, P6)

- It is also differentiable, and 'nice' to solve, e.g., by gradient descent (you will try this in the last Python notebook, to be posted today)

Logistic Regression: Intuition and Properties

- logistic loss function

$$
f\left(x_{0}, x_{1}\right)=-\sum_{i=1}^{m}\left[\log \left(1+\exp \left(x_{0}+x_{1} a_{i}\right)\right)-y_{i}\left(x_{0}+x_{1} a_{i}\right)\right]
$$

- Sometimes a regularizer is added, e.g., $r\left(x_{0}, x_{1}\right)=x_{0}^{2}+x_{1}^{2}$
- $f(x)+r(x)$ is still convex (sum of two convex functions)
after we learn such a model, how is it used for prediction?
- For a future data point with feature \underline{a}, we have $p=\frac{\exp \left(x_{0}+x_{1} a\right)}{1+\exp \left(x_{0}+x_{1} a\right)} \quad\left(\right.$ see $\left.p_{1} 9\right)$
- We can add convex constraints on parameters (e.g., upper/lower bounds on values, $x=\left(x_{0}, x_{1}\right)$ restricted to a ball, etc.

(General) Norm Approximation Problems

[]$_{m \times n}$

$$
\underset{x}{\operatorname{minimize}}\|\tilde{A} x-\hat{b}\|
$$

$\left(A \in \mathbf{R}^{m \times n}\right.$ with $m \geq n,\|\cdot\|$ is a norm on $\left.\mathbf{R}^{m}\right)$

- geometric interpretation of solution $x^{\star}=\operatorname{argmin}_{x}\|A x-b\|$: $A x^{\star}$ is point in $\mathcal{R}(A)$ closest to b
- estimation: linear measurement model

$A x^{*}$

$$
y=A x+v
$$

y are measurements, x is unknown, v is measurement error or noise given $y=b$, best guess of x is x^{\star}

- optimal design: x are design variables (input), $A x$ is result (output) x^{\star} is design that best approximates desired result b

Norm Approximation: Examples

- least-squares approximation $\left(\|\cdot\|_{2}\right)$: solution satisfies

$$
A^{T} A x=A^{T} b
$$

$$
\left(x^{\star}=\left(A^{T} A\right)^{-1} A^{T} b \text { if } \operatorname{Rank} A=n\right) \quad(\text { from } \operatorname{Mod} 1-\operatorname{Mod} 2)
$$

- Chebyshev approximation $\left(\|\cdot\|_{\infty}\right)$: can be solved as a Linear Program:
- sum of absolute residuals approximation $\left(\|\cdot\|_{1}\right)$: can be solved as an Linear Program:

Norm Approximation: Examples

- least-squares approximation $\left(\|\cdot\|_{2}\right)$: solution satisfies

$$
r=A x-b \in \mathbb{R}^{m}
$$

$$
A^{T} A x=A^{T} b
$$

$$
\left(x^{\star}=\left(A^{T} A\right)^{-1} A^{T} b \text { if } \operatorname{Rank} A=n\right)
$$

- Chebyshev approximation $\left(\|\cdot\|_{\infty}\right)$: can be solved as a Linear Program:
(1) \Leftrightarrow (2) \Leftrightarrow (3)

- sum of absolute residuals approximation $\left(\|\cdot\|_{1}\right)$: can be solved as an Linear Program:
minimize
subject to

Norm Approximation: Examples

- least-squares approximation $\left(\|\cdot\|_{2}\right)$: solution satisfies

$$
A^{T} A x=A^{T} b
$$

$$
\left(x^{\star}=\left(A^{T} A\right)^{-1} A^{T} b \text { if } \boldsymbol{\operatorname { R a n k }} A=n\right)
$$

- Chebyshev approximation $\left(\|\cdot\|_{\infty}\right)$: can be solved as a Linear Program:

```
minimize t
subject to -t\mathbf{1}\preceqAx-b\preceqt\mathbf{1}
```

- sum of absolute residuals approximation $\left(\|\cdot\|_{1}\right)$: can be solved as an Linear Program:
minimize $\quad \mathbf{1}^{T} y$

$$
\text { subject to } \quad-y \preceq A x-b \preceq y
$$

Penalty Function Approximation

$$
\begin{array}{ll}
\operatorname{minimizize} & \phi\left(r_{1}\right)+\cdots+\phi\left(r_{m}\right) \\
\text { subject to } & r=A x-b
\end{array}
$$

$\left(A \in \mathbf{R}^{m \times n}, \phi: \mathbf{R} \rightarrow \mathbf{R}\right.$ is a convex penalty function)

examples

- quadratic: $\phi(u)=u^{2}, \phi(u)=|u|$
- deadzone-linear with width a :
- pointwise max of 2 convex fcts \Rightarrow convex

$$
\phi(u)=\max \{0,|u|-a\}
$$

-zero penalty for values in $[-a, a]$ v"deadzone"

- \log-barrier with limit a :

$$
\phi(u)= \begin{cases}-a^{2} \log \left(1-\left(\frac{u}{a}\right)^{2}\right) & |u|<a \\ \infty & \text { else }\end{cases}
$$

ℓ_{2}-norm vs ℓ_{1}-norm Penalties

example: histogram of residuals $A x-b(A$ is $200 \times 80)$ for $r=A x-b \in \mathbb{R}^{200}$

$$
x_{\mathrm{ls}}=\operatorname{argmin}\|A x-b\|_{2}, \quad x_{\ell_{1}}=\operatorname{argmin}\|A x-b\|_{1}
$$

Recall: similar intuition to regression with ℓ_{1} regularization (last lecture)
vertical axis: histogram of r
(\# of r_{i} 's falling in each bin)

- most residues are not zero (vector $r=A x-b$ is NOT "sparse")
- many residues are zero! (~ 80 out of 200)
- values of r_{i} also have a wider spread; can he larger than those for $x_{1 s}$

Convex Classification Problems

- classification: linear discrimination
- approximate linear discrimination of non-separable sets
- robust linear discrimination
- support vector machine (SVM)

Wrap up (of Module 4)

- Many real-world problems can be expressed as Convex optimization problems
- We focused on examples in ML, but also very common in:
signal processing (signal reconstruction, denoising), communication system design (power allocation, rate allocation), feedback control design, mechanical systems design, statisitics, finance,...
- The key is to recongnize when a problem can be cast or modeled as a convex one - nontrivial, needs skill and practice!
- important to know basic convex sets/functions and properties that preserve convexity - combine with linear algebra and spectral methods seen in Mod1-Mod 3

Wrap up (of Module 4)

- Many real-world problems can be expressed as Convex optimization problems
- We focused on examples in ML, but also very common in: signal processing (signal reconstruction, denoising), communication system design (power allocation, rate allocation), feedback control design, mechanical systems design, statisitics, finance,...
- The key is to recongnize when a problem can be cast or modeled as a convex one
- nontrivial, needs skill and practice!
- important to know basic convex sets/functions and properties that preserve convexity
- combine with linear algebra and spectral methods seen in Mod1-Mod 3

Wrap up (of Module 4)

- Historically: the more people understood convexity, the more they looked for (and found) convex problems
- Knowing about convexity can help even when your target problem isnot convex: convex relaxations/approximations, convex subproblems,...
- We hope this glimpse into convexity motivates you to learn more: grad courses, online material, book "Convex Optimization" by Boyd \& Vandenberghe (and many others) (course EE578 @ UW)

