EE445 Mod4-Lec4: Convex Optimization Problems: ML Models II

References: [Optimization Models] Chapter 8, sections 8.1-8.3 (except 8.2.3) and Chapter 13 (sections 13.1, 13.2, 13.3.1-5)

[Lecturer: M. Fazel]

Topics for Module 4

- Lec1: Convex problems: convex sets and functions
- Lec2: Smooth unconstrained convex minimization & gradient descent
- Lec3 & 4: Convex Optimization Problems: ML models

This lecture's topics:

- Logistic Regression: derivation, properties, intuition, variations
- Penalty Function Approximation
- Other examples
- Wrap-up of Module 4

Logistic Regression: Overview

- Data: Continuous features $\{a_i\}$ and discrete labels $y_i \in \{0,1\}$
- Goal: Find linear predictor

$$x_0 + x_1 a_i = \begin{cases} \text{positive} & \Rightarrow & y_i = 1\\ \text{negative} & \Rightarrow & y_i = 0 \end{cases}$$

- Approach: Combine Bernoulli model with a linear predictor
- Examples: Hours studied vs. Pass/Fail, measurements vs. disease

[Lecturer: M. Fazel]

Logistic Regression: Derivation

Rewriting the Bernoulli model in standard form,

$$P((a_i, y_i); p_i) = p_i^{y_i} (1 - p_i)^{1 - y_i}$$

= exp $\left(y_i \log\left(\frac{p_i}{1 - p_i}\right) + \log(1 - p_i) \right),$

we can model the term multiplying y_i using our linear predictor,

$$\log\left(\frac{p_i}{1-p_i}\right) = x_0 + x_1 a_i,$$

which gives us,

$$\log(1 - p_i) = -\log(1 + \exp(x_0 + x_1 a_i)).$$

Combining the above expressions gives the "likelihood function":

$$\mathcal{L}(x_0, x_1; (a, y)) = \prod_{i=1}^m \exp\left(y_i(x_0 + x_1a_i) - \log\left(1 + \exp(x_0 + x_1a_i)\right)\right).$$

[Lecturer: M. Fazel]

Logistic Regression: Derivation

We can fit our model parameters to the given data by maximizing the likelihood, or by minimizing the negative log-likelihood:

$$-\log \mathcal{L}(x_0, x_1; (a, y)) = \sum_{i=1}^m \log (1 + \exp(x_0 + x_1 a_i)) - y_i(x_0 + x_1 a_i)$$

Explicitly, we solve the following problem

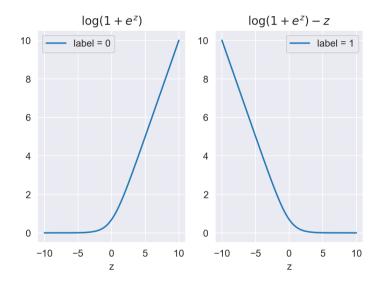
$$\min_{x_0, x_1} \sum_{i=1}^m \log(1 + \exp(x_0 + x_1 a_i)) - y_i(x_0 + x_1 a_i)$$

[Lecturer: M. Fazel]

$$\min_{x_0, x_1} \sum_{i=1}^m \log(1 + \exp(x_0 + x_1 a_i)) - y_i(x_0 + x_1 a_i)$$

- If the label is 0, we want to make $\log(1 + \exp(x_0 + x_1a_i))$ as small as possible, equivalent to making $x_0 + x_1a_i \ll 0$
- If the label is 1, can show objective decreases with respect to $x_0 + x_1 a_i$, so we want $x_0 + x_1 a_i \gg 0$

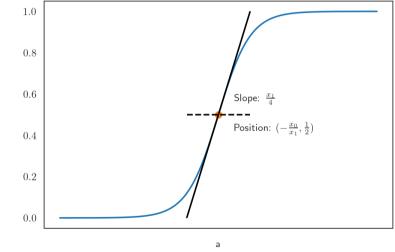
[Lecturer: M. Fazel]



[Lecturer: M. Fazel]

[EE445 Mod4-L3]

• We look for intercept x_0 and slope x_1 that do the best job for all the data in the set.



[Lecturer: M. Fazel]

• The logistic loss function

$$f(x_0, x_1) = -\sum_{i=1}^{m} \left[\log(1 + \exp(x_0 + x_1 a_i)) - y_i(x_0 + x_1 a_i) \right]$$

is convex (see HW 5, P6)

• It is also differentiable, and 'nice' to solve, e.g., by gradient descent (you will try this in the last Python notebook, to be posted today)

• logistic loss function

$$f(x_0, x_1) = -\sum_{i=1}^{m} \left[\log(1 + \exp(x_0 + x_1 a_i)) - y_i(x_0 + x_1 a_i) \right]$$

- Sometimes a regularizer is added, e.g., $r(x_0, x_1) = x_0^2 + x_1^2$
- f(x) + r(x) is still convex (sum of two convex functions)
- For a future data point with feature a, we have $p = \frac{\exp(x_0 + x_1 a)}{1 + \exp(x_0 + x_1 a)}$
- We can add convex constraints on parameters (e.g., upper/lower bounds on values, $x = (x_0, x_1)$ restricted to a ball, etc.

(General) Norm Approximation Problems

minimize ||Ax - b||

 $(A \in \mathbf{R}^{m imes n} \text{ with } m \ge n, \|\cdot\| \text{ is a norm on } \mathbf{R}^m)$

- geometric interpretation of solution $x^* = \operatorname{argmin}_x ||Ax b||$: Ax^* is point in $\mathcal{R}(A)$ closest to b
- estimation: linear measurement model

$$y = Ax + v$$

y are measurements, x is unknown, v is measurement error given y=b, best guess of x is x^\star

• optimal design: x are design variables (input), Ax is result (output) x^* is design that best approximates desired result b

[Lecturer: M. Fazel]

Norm Approximation: Examples

• least-squares approximation ($\|\cdot\|_2$): solution satisfies

$$A^T A x = A^T b$$

 $(x^{\star} = (A^T A)^{-1} A^T b \text{ if } \operatorname{\mathbf{Rank}} A = n)$

• Chebyshev approximation $(\|\cdot\|_{\infty})$: can be solved as a Linear Program:

minimize tsubject to $-t\mathbf{1} \preceq Ax - b \preceq t\mathbf{1}$

• sum of absolute residuals approximation $(\| \cdot \|_1)$: can be solved as an Linear Program:

minimize $\mathbf{1}^T y$ subject to $-y \preceq Ax - b \preceq y$

[Lecturer: M. Fazel]

Norm Approximation: Examples

• least-squares approximation ($\|\cdot\|_2$): solution satisfies

$$A^T A x = A^T b$$

 $(x^{\star} = (A^T A)^{-1} A^T b \text{ if } \operatorname{\mathbf{Rank}} A = n)$

• Chebyshev approximation $(\|\cdot\|_{\infty})$: can be solved as a Linear Program:

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & -t\mathbf{1} \preceq Ax - b \preceq t\mathbf{1} \end{array}$

• sum of absolute residuals approximation $(\| \cdot \|_1)$: can be solved as an Linear Program:

minimize $\mathbf{1}^T y$ subject to $-y \preceq Ax - b \preceq y$

[Lecturer: M. Fazel]

Norm Approximation: Examples

• least-squares approximation ($\|\cdot\|_2$): solution satisfies

$$A^T A x = A^T b$$

 $(x^{\star} = (A^T A)^{-1} A^T b \text{ if } \operatorname{\mathbf{Rank}} A = n)$

• Chebyshev approximation $(\|\cdot\|_{\infty})$: can be solved as a Linear Program:

 $\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & -t\mathbf{1} \preceq Ax - b \preceq t\mathbf{1} \end{array}$

• sum of absolute residuals approximation $(\| \cdot \|_1)$: can be solved as an Linear Program:

minimize
$$\mathbf{1}^T y$$

subject to $-y \preceq Ax - b \preceq y$

[Lecturer: M. Fazel]

Penalty Function Approximation

minimize
$$\phi(r_1) + \dots + \phi(r_m)$$

subject to $r = Ax - b$

 $(A \in \mathbf{R}^{m imes n}, \ \phi : \mathbf{R}
ightarrow \mathbf{R}$ is a convex penalty function)

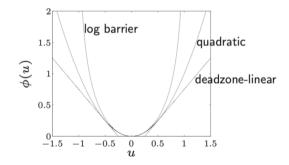
examples

- quadratic: $\phi(u) = u^2$
- deadzone-linear with width *a*:

 $\phi(u) = \max\{0, |u| - a\}$

• log-barrier with limit *a*:

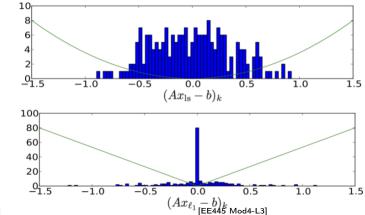
$$\phi(u) = \left\{ \begin{array}{ll} -a^2 \log(1-(\frac{u}{a})^2) & |u| < a \\ \infty & \text{else} \end{array} \right.$$



[Lecturer: M. Fazel]

ℓ_2 -norm vs ℓ_1 -norm Penalties

example: histogram of residuals Ax - b (A is 200×80) for $x_{ls} = \operatorname{argmin} ||Ax - b||_2$, $x_{\ell_1} = \operatorname{argmin} ||Ax - b||_1$ Recall: similar intuition to regression with ℓ_1 regularization (last lecture)



[Lecturer: M. Fazel]

Convex Classification Problems

- classification: linear discrimination
- approximate linear discrimination of non-separable sets
- robust linear discrimination
- support vector machine

Wrap up (of Module 4)

- Many real-world problems can be expressed as Convex optimization problems
- We focused on examples in ML, but also very common in: signal processing (signal reconstruction, denoising), communication system design (power allocation, rate allocation), feedback control design, mechanical systems design, statisitics, finance,...

• The key is to recongnize when a problem can be cast or modeled as a convex one

- nontrivial, needs skill and practice!
- important to know basic convex sets/functions and properties that preserve convexity
- combine with linear algebra and spectral methods seen in Mod1-Mod 3

Wrap up (of Module 4)

- Many real-world problems can be expressed as Convex optimization problems
- We focused on examples in ML, but also very common in: signal processing (signal reconstruction, denoising), communication system design (power allocation, rate allocation), feedback control design, mechanical systems design, statisitics, finance,...
- The key is to recongnize when a problem can be cast or modeled as a convex one
 - nontrivial, needs skill and practice!
 - important to know basic convex sets/functions and properties that preserve convexity
 - combine with linear algebra and spectral methods seen in Mod1-Mod 3

Wrap up (of Module 4)

- Historically: the more people understood convexity, the more they looked for (and found) convex problems
- Knowing about convexity can help even when your target problem isnot convex: convex relaxations/approximations, convex subproblems,...
- We hope this glimpse into convexity motivates you to learn more: grad courses, online material, book "Convex Optimization" by Boyd & Vandenberghe (and many others)