EE445 Mod4-Lec3: Convex Optimization Problems:

models

References: [Optimization Models| Chapter 8, sections 8.1-8.3 (except 8.2.3)
and Chapter 13 (sections 13.1, 13.2, 13.3.1-5)
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Topics for Module 4

e Lecl: Convex problems: convex sets and functions
® [ec2: Smooth unconstrained convex minimization & gradient descent
e [ec3 & 4: Convex Optimization Problems: ML models

[Lecturer: M. Fazel] [EE445 Mod4-L3]



Convex Optimization problems

standard form convex optimization problem

minimize  fo(z)
subject to fz(x) i=1,...
x — bl, Z — 17 e
® fo, fi, ..., fm are convex

® equality constraints are affine

important property: local optima are globally optimal!
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Local optima are global in convex problems

any locally optimal point of a convex problem is globally optimal
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Local optima are global in convex problems

any locally optimal point of a convex problem is globally optimal

proof: suppose z is locally optimal, and y is optimal with fo(y) < fo(z)
x locally optimal means there is an R > 0 such that

z feasible, [z —z|s <R = fo(z) > fo(x)
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Local optima are global in convex problems

any locally optimal point of a convex problem is globally optimal

proof: suppose z is locally optimal, and y is optimal with fo(y) < fo(z)
x locally optimal means there is an R > 0 such that

z feasible, [z —z|s <R = fo(z) > fo(x)

R

consider z = 0y 4 (1 — )z with § = 5=
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Local optima are global in convex problems

any locally optimal point of a convex problem is globally optimal

proof: suppose z is locally optimal, and y is optimal with fo(y) < fo(z)
x locally optimal means there is an R > 0 such that
z feasible, [z —z|s <R = fo(z) > fo(x)

R

consider z = 0y 4 (1 — )z with § = 5=

® [ly—x|2> R, s00<6<1/2
® 2 is a convex combination of two feasible points, hence also feasible
* ||z —xlla = R/2 and

fo(2) < 0fo(z) + (1 = 0)fo(y) < fo(x)

which contradicts our assumption that z is locally optimal.
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Classes of Convex Optimization Problems

Linear Program: linear objective function fy and constraint functions f;

Quadratic Program: convex quadratic fy, linear f;

Quadratically-constrained Quadratic Program: convex quadratic fj, convex quadratic f;

Second-order Cone Program

Semi-definite Program

While we won't discuss this, note that recongizing a practical problem as an instance of one
of these classes helps with picking the right algorithm.
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Optimization: Machine Learning Models

Recall: many ML problems seek to build a prediction model
g(a;z) =y

given a data set

{(alayl), R (am’ym)}a

with components
® a; = (a,...,a;) - data features
® y; € Ror{0,1} - data value or label/class
® g:R" — Ror {0,1} - prediction function
® r=(x1,...,2,) - model parameters
® m - # of data points
® n - # of data features
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Optimization: Machine Learning (ML) Models

We can fit a model to the given data by solving an optimization problem of the form

minimize; > ", fi (g(az'; z), yz) +r(x),

with components
® r=(x1,...,%,) - model parameters we want to learn

e f;:R" — R - "loss” functions: measure how well the model fits the data for given
parameters; e.g., (g(ai; ) — y;)?

® r(x): R™ — R - regularization function
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Optimization: Machine Learning Models

We consider two common problems in ML:

Linear Regression Logistic Regression (Classification)
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Linear Regression: Overview

¢ Data: Continuous features {a;} and outputs {y; }
® Goal: Find linear predictor To + T1a; = Y;
e Studied in Module 2 in detail
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Linear Regression: Intuition and Properties
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Minimize the least-squares distance between observations y; and predictions zg + z14;.

The problem is convex, smooth, and easy to solve.

® Linear regression has a closed-form solution (as seen in Mod?2)

but often solved more efficiently by iterative algorithms

[Lecturer: M. Fazel] [EE445 Mod4-L3] 14



Regularization: Overview

Many problems in machine learning add a regularization term r(z) to the objective function
to

® incorporate prior knowledge about structure in z, e.g., sparsity or smoothness
® help avoid overfitting,
® get more robust (to data perturbations) solutions, or

® improve the stability of the solution process.

Two popular forms of regularized linear regression:
® Lasso - min, f(x) + A|z|[1, where ||z|1 = >0 |2
 Ridge - min, f(z) + Ala/l3, where [[2]3 = Y1, a?

i
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Regularization: Geometric Interpretation

Consider the constrained least-squares problem

minimize, 3|4z — y||3
2l <t

Choice of norm influences properties of solution x: with p = 1, solutions tend to occur on
the vertices, where many z; =0
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Regularization: Relaxed Constraints

We can move the norm from a constraint into the objective function to get
minimize, %HAQU - Z’J”% + Allz |

where regularization parameter \ balances model error with how much we regularize.

The Lasso (p = 1) is often used to find sparse solutions. Ridge regression (p = 2) is often
used for ill-conditioned problems.

More generally: regularizers can promote other structures:
For example, if the parameters form a matrix X, a low-rank matrix is often desired (e.g., the
‘matrix completion problem’ for recommender systems).
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