
EE445 Mod4-Lec3: Convex Optimization Problems: ML
models

References: [Optimization Models] Chapter 8, sections 8.1-8.3 (except 8.2.3)
and Chapter 13 (sections 13.1, 13.2, 13.3.1-5)
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Topics for Module 4

• Lec1: Convex problems: convex sets and functions
• Lec2: Smooth unconstrained convex minimization & gradient descent
• Lec3 & 4: Convex Optimization Problems: ML models
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Convex Optimization problems

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

• f0, f1, . . . , fm are convex
• equality constraints are affine

important property: local optima are globally optimal!
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Local optima are global in convex problems

any locally optimal point of a convex problem is globally optimal

proof: suppose x is locally optimal, and y is optimal with f0(y) < f0(x)
x locally optimal means there is an R > 0 such that

z feasible, ∥z − x∥2 ≤ R =⇒ f0(z) ≥ f0(x)

consider z = θy + (1− θ)x with θ = R
2∥y−x∥2

• ∥y − x∥2 > R, so 0 < θ < 1/2
• z is a convex combination of two feasible points, hence also feasible
• ∥z − x∥2 = R/2 and

f0(z) ≤ θf0(x) + (1− θ)f0(y) < f0(x)

which contradicts our assumption that x is locally optimal.
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Classes of Convex Optimization Problems

• Linear Program: linear objective function f0 and constraint functions fi

• Quadratic Program: convex quadratic f0, linear fi
• Quadratically-constrained Quadratic Program: convex quadratic f0, convex quadratic fi

• Second-order Cone Program
• Semi-definite Program
• . . .

While we won’t discuss this, note that recongizing a practical problem as an instance of one
of these classes helps with picking the right algorithm.
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Optimization: Machine Learning Models

Recall: many ML problems seek to build a prediction model

g(a;x) ≈ y

given a data set {
(a1, y1), . . . , (am, ym)

}
,

with components
• ai = (ai1, . . . , ain) - data features
• yi ∈ R or {0, 1} - data value or label/class
• g : Rn → R or {0, 1} - prediction function
• x = (x1, . . . , xn) - model parameters
• m - # of data points
• n - # of data features
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Optimization: Machine Learning (ML) Models

We can fit a model to the given data by solving an optimization problem of the form

minimizex
∑m

i=1 fi

(
g(ai;x), yi

)
+ r(x),

with components
• x = (x1, . . . , xn) - model parameters we want to learn
• fi : Rn → R - “loss” functions: measure how well the model fits the data for given

parameters; e.g., (g(ai;x)− yi)
2

• r(x) : Rn → R - regularization function
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Optimization: Machine Learning Models

We consider two common problems in ML:

Linear Regression Logistic Regression (Classification)
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Linear Regression: Overview

• Data: Continuous features {ai} and outputs {yi}
• Goal: Find linear predictor x0 + x1ai ≈ yi

• Studied in Module 2 in detail
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Linear Regression: Intuition and Properties

min
x0,x1

m∑
i=1

(yi − x0 − x1ai)
2

• Minimize the least-squares distance between observations yi and predictions x0 + x1ai.
• The problem is convex, smooth, and easy to solve.
• Linear regression has a closed-form solution (as seen in Mod2)
• but often solved more efficiently by iterative algorithms
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Regularization: Overview

Many problems in machine learning add a regularization term r(x) to the objective function
to
• incorporate prior knowledge about structure in x, e.g., sparsity or smoothness
• help avoid overfitting,
• get more robust (to data perturbations) solutions, or
• improve the stability of the solution process.

Two popular forms of regularized linear regression:
• Lasso - minx f(x) + λ∥x∥1, where ∥x∥1 =

∑n
i=1 |xi|

• Ridge - minx f(x) + λ∥x∥22, where ∥x∥22 =
∑n

i=1 x
2
i
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Regularization: Geometric Interpretation

Consider the constrained least-squares problem

minimizex 1
2∥Ax− y∥22
∥x∥p ≤ t

Choice of norm influences properties of solution x: with p = 1, solutions tend to occur on
the vertices, where many xi = 0
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Regularization: Relaxed Constraints

We can move the norm from a constraint into the objective function to get

minimizex 1
2∥Ax− y∥22 + λ∥x∥p

where regularization parameter λ balances model error with how much we regularize.

The Lasso (p = 1) is often used to find sparse solutions. Ridge regression (p = 2) is often
used for ill-conditioned problems.

More generally: regularizers can promote other structures:
For example, if the parameters form a matrix X, a low-rank matrix is often desired (e.g., the
‘matrix completion problem’ for recommender systems).
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