
EE445 Mod4-Lec2: Convex Optimization

References: [Optimization Models: Calafiore & El Ghaoui] Chapter 8
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Topics for Module 4

• Lec1: Convexity and Convex Sets
• Lec2: Convex Functions, Smooth Unconstrained Minimization & Gradient Descent
• Lec3: Convex Optimization Problems: ML models I
• Lec4: Convex Optimization Problems: ML models II

[Lecturer: M. Fazel] [EE445 Mod4-L1] 2

HW5 startearly
HW6 extracredit included infinal exam



Convex functions

From last lecture: f : Rn 7! R is a convex function if

f
⇣
�x+ (1� �)y

⌘
 �f(x) + (1� �)f(y)

for all x, y 2 Rn and all 0  �  1.

Convex Nonconvex
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Examples on R

• f is called concave if �f is convex
convex:

• affine: ax+ b on R, for any a, b 2 R
• exponential: eax, for any a 2 R
• powers: x↵ on R++, for ↵ � 1 or ↵  0
• powers of absolute value: |x|p on R, for p � 1

concave:
• affine: ax+ b on R, for any a, b 2 R
• powers: x↵ on R++, for 0  ↵  1
• logarithm: log x on R++
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Examples on Rn

affine functions are both convex and concave:
• affine function f : Rn 7! R, f(x) = aTx+ b

all norms are convex, e.g.,
• `p norms: kxkp = (

Pn
i=1 |xi|p)1/p for p � 1

• 1-norm: kxk1 = maxk |xk|
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First-order convexity condition

f is differentiable if dom f is open and the gradient

rf(x) =

✓
@f(x)

@x1
,
@f(x)

@x2
, . . . ,

@f(x)

@xn

◆

exists at each x 2 dom f
1st-order condition: differentiable f with convex domain is convex iff

f(y) � f(x) +rf(x)T (y � x) for all x, y 2 dom f
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Second-order convexity condition

f is twice differentiable if dom f is open and the Hessian r2f(x) 2 Sn,

r2f(x)ij =
@2f(x)

@xi@xj
, i, j = 1, . . . , n,

exists at each x 2 dom f
2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

r2f(x) ⌫ 0 for all x 2 dom f

• in 1D: means f 00(x) � 0 for all x 2 dom f
• note the distinction between: r2f(x) ⌫ 0 versus “diag entries � 0"
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Examples

quadratic function: f(x) = (1/2)xTPx+ qTx+ r (with P 2 Sn)

rf(x) = Px+ q, r2f(x) = P

convex if P ⌫ 0
least-squares objective: f(x) = kAx� bk22

rf(x) = 2AT (Ax� b), r2f(x) = 2ATA

convex (for any A)
quadratic-over-linear: f(x, y) = x2/y

r2f(x, y) =
2

y3


y2 �xy
�xy x2

�
=

2

y3


y
�x

� 
y
�x

�T
⌫ 0

convex for y > 0
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Epigraph of a function

epigraph of f : Rn ! R:

epi f = {(x, t) 2 Rn+1 | x 2 dom f, f(x)  t}

this notion connects the definitions of convex functions with convex sets:

function f is convex if and only if epi f is a convex set
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Operations that preserve convexity

practical methods for establishing convexity of a function
1. verify the definition: show for all x, y 2 dom f and all 0  �  1,

f
⇣
�x+ (1� �)y

⌘
 �f(x) + (1� �)f(y)

2. for twice differentiable functions, show r2f(x) ⌫ 0

3. show that f is obtained from simple convex functions by operations that preserve
convexity:
I nonnegative weighted sum
I composition with affine function
I pointwise maximum
I more general composition
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1. Positive weighted sum

nonnegative multiple: ↵f is convex if f is convex, ↵ � 0

sum: f1 + f2 convex if f1, f2 convex

(this extends to infinite sums, integrals)
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2. Composition with an affine function

Consider the affine function x 7! Ax+ b, with A 2 Rm⇥n, b 2 Rm,
then the function g(x) = f(Ax+ b) is a convex function if f is convex

examples
• (any) norm of an affine function: g(x) = kAx+ bk
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3. Pointwise maximum

If f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex

note: this is maximum is taken pointwise, meaning for every x, look at the value of
f1(x),. . . ,fm(x) and take the largest of them (at that x)

examples
• piecewise-linear function: f(x) = maxi=1,...,m(aTi x+ bi) is convex
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4. Partial minimization

if f(x, y) is convex in (x, y) (note that this means jointly convex in the variables) and C is a
convex set, then

g(x) = min
y2C

f(x, y)

is also convex

example
distance from a point x to a set S:

f(x) = dist(x, S) = min
y2S

kx� yk

is convex if S is convex
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More examples
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Minimizing convex functions: Basic solution methods

Very few optimization problems have a closed-form solution (e.g., least-squares); most
problems are solved using iterative methods.

One important iterative method is gradient descent (for unconstrained minimization of a
differentiable, convex f):

given a starting point x0, run the following iterations for k = 1, 2, . . .,

xk+1 = xk � ↵rf
⇣
xk

⌘
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Convex Optimization: Basic Solution Methods

xk+1 = xk � ↵rf
⇣
xk

⌘
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