EE445 Mod4-Lec2: Convex Optimization

References: [Optimization Models: Calafiore & El Ghaoui] Chapter 8

[Lecturer: M. Fazel]

Topics for Module 4

HW5-start early -- HW6-extra credit-included in final exam

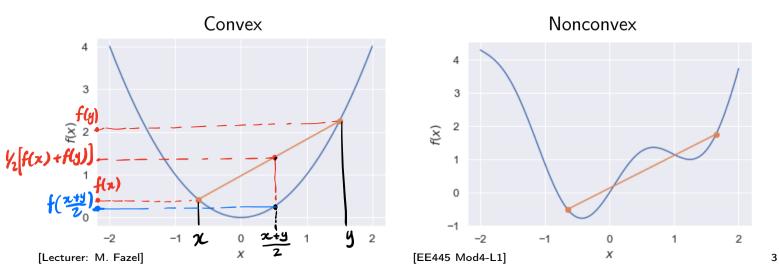
- Lec1: Convexity and Convex Sets
- Lec2: <u>Convex Functions</u>, Smooth Unconstrained Minimization & Gradient Descent
- Lec3: Convex Optimization Problems: ML models I
- Lec4: Convex Optimization Problems: ML models II

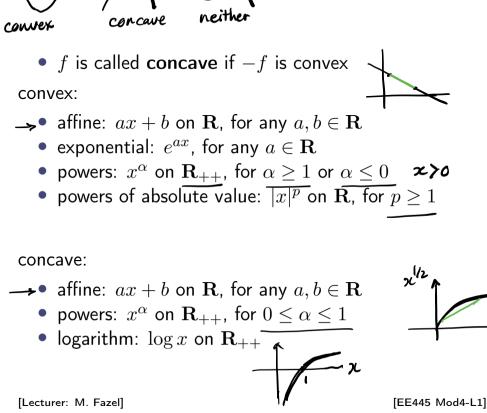
Convex functions

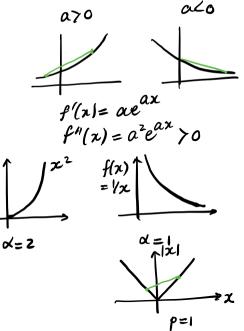
From last lecture: $f : \mathbf{R}^n \mapsto \mathbf{R}$ is a **convex function** if

$$f\left(\frac{\lambda x + (1-\lambda)y}{\omega}\right) \leq \frac{\lambda f(x) + (1-\lambda)f(y)}{\omega}$$

for all $x, y \in \mathbf{R}^n$ and all $0 \le \lambda \le 1$.







concave:

- \rightarrow affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
 - powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
 - logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbf{R}

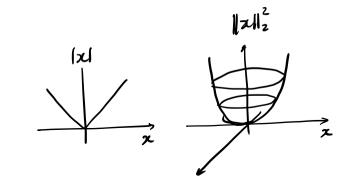
Examples on
$$\mathbb{R}^n$$
 $f:\mathbb{R}^n \to \mathbb{R}^m$ $f(n) = Ax+b$

affine functions are both convex and concave:

• affine function $f : \mathbf{R}^n \mapsto \mathbf{R}$, $f(x) = a^T x + b$

all norms are convex, e.g.,

- ℓ_p norms: $\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$
- ∞ -norm: $||x||_{\infty} = \max_k |x_k|$



First-order convexity condition

f is differentiable if dom f is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \geq f(x) + \nabla f(x)^{T}(y - x) \quad \text{for all } x, y \in \text{dom } f$$

$$Taylor \text{ expansion around } x:$$

$$f(y) = f(x) + \nabla f(x) (y - x) \quad f(y) = f(x) + \nabla f(x) (y - x) = f(x) + \nabla f(x) + \nabla f(x) (y - x) = f(x) + \nabla f(x) + \nabla f(x) + \nabla f(x) = f(x) + \nabla f(x) = f(x) + \nabla f(x) + \nabla f(x) = f(x) = f(x) + \nabla f(x) = f(x) + \nabla f(x) = f(x$$

underestimator

Second-order convexity condition

f is twice differentiable if dom f is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{dom} f$ 2nd-order conditions: for twice differentiable f with convex domain

• *f* is convex if and only if

 $abla^2 f(x) \succeq 0$ for all $x \in \operatorname{dom} f$

- in 1D: means $f''(x) \ge 0$ for all $x \in \operatorname{\mathbf{dom}} f$
- note the distinction between: $\nabla^2 f(x) \succeq 0$ versus "diag entries ≥ 0 "

f(24, 222)

Examples

quadratic function:
$$f(x) = (1/2)x P + q^T x + r$$
 (with $P \in \mathbf{S}^n$) \mathbf{xek}^n
 $\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P$

convex if $P \succeq 0$ least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T(Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A) quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y^2 & -xy \\ -xy & x^2 \end{bmatrix} = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0

[Lecturer: M. Fazel]

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \succeq 0$ least-squares objective: $f(x) = ||Ax - b||_2^2 = (Ax-b)^{\mathsf{T}}(Ax-b)$

$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A \ge 0$$

convex (for any A) quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y^2 & -xy \\ -xy & x^2 \end{bmatrix} = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0

[Lecturer: M. Fazel]

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

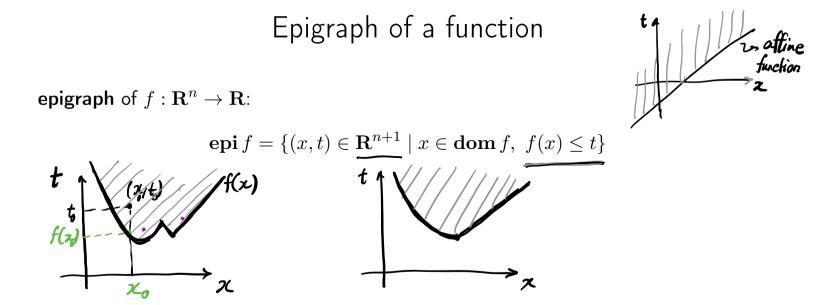
convex if $P \succeq 0$ least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T(Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A) quadratic-over-linear: $f(x,y) = x^2/y$ (See Friday 5/20 session for example details) $\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y^2 & -xy \\ -xy & x^2 \end{bmatrix} = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$

convex for y > 0

[Lecturer: M. Fazel]



this notion connects the definitions of convex functions with convex sets:

function f is convex if and only if epi f is a convex set

[Lecturer: M. Fazel]

given:
$$(x_1, t_1) \in epif$$
 (i.e., $f(x_1) \leq t_1$)
and $(x_{r_1} t_2) \in epif$ (i.e., $f(x_2) \leq t_2$)
show that: $\forall o \leq \theta \leq 1$: $(\theta x_{1+} (1-\theta) x_2, \theta t_1 + (1-\theta) t_2) \in epif$
from def. of epigraph, this is the same as:
 $f(\theta x_1 + (1-\theta) x_2) \leq \theta t_1 + (1-\theta) t_2$
to show it, first use convexity of f:
 $f(\theta x_1 + (1-\theta) x_2) \leq \theta f(x_1) + (1-\theta) f(x_2) \leq \theta t_1 + (1-\theta) t_2$
thus use $(x_1 t_1), (x_2, t_2) \in epif$
 $\leq t_1$
 $\leq t_1$
 $\leq t_2$

Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify the definition: show for all $x, y \in \mathbf{dom} \ f$ and all $0 < \lambda < 1$.

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$ positive semidefinite
- 3. show that f is obtained from simple convex functions by operations that preserve convexity:
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maxi

1. Positive weighted sum

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum:
$$f_1 + f_2$$
 convex if f_1, f_2 convex
• $f(x) = ||x||_2 + 3 ||x||_1$, $\sum_{i=1}^{n} |x_i|$
 $\Rightarrow convex$
• $f(x) = \sum_{i=1}^{n} e^{x_i}$
 $\Rightarrow convex$

(this extends to infinite sums, integrals)

[Lecturer: M. Fazel]

2. Composition with an affine function

Consider the affine function $x \mapsto Ax + b$, with $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$, then the function g(x) = f(Ax + b) is a convex function if f is convex

examples

• (any) norm of an affine function: g(x) = ||Ax + b||

•
$$f(z) = \sum_{i=1}^{n} e^{2i}$$

 $g(z) = f(Az+b) = \sum_{i=1}^{n} e^{(a_i^T z+b_i)}$
 $g(z) = f(Az+b) = \sum_{i=1}^{n} e^{(a_i^T z+b_i)} \Rightarrow convep$

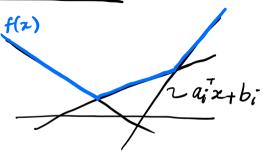
[Lecturer: M. Fazel]

3. Pointwise maximum

If f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex note: this is maximum is taken pointwise, meaning for every x, look at the value of $f_1(x), \ldots, f_m(x)$ and take the largest of them (at that x)

examples

• piecewise-linear function: $f(x) = \max_{i=1,...,m}(\underline{a_i^T x + b_i})$ is convex $f(x) = \max\left\{f_i(x), f_i(x)\right\}$



4. Partial minimization

if f(x,y) is convex in (x,y) (note that this means jointly convex in the variables) and \underline{C} is a convex set, then

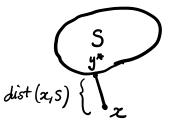
$$g(x) = \min_{y \in C} f(x, y)$$

is also convex

example distance from a point *x* to a set *S*:

$$f_{\boldsymbol{o}}(x) = \mathbf{dist}(x, S) = \min_{y \in S} \|x - y\|$$

x elR", SCR"



is convex if S is convex
proof: first check if
$$f(xy) = \|x-y\|$$
 is convex Gointly) in (x,y) :
 $\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} I & -I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ is a linear map, and $\|x-y\| = \|A[x]\|$ is composition of linear
 $\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} I & -I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ is a linear map, and $\|x-y\| = \|A[x]\|$ is composition of linear
 $\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} I & -I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ is a linear map, and $\|x-y\| = \|A[x]\|$ is composition of linear
 $\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} I & -I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ is a linear map, and $\|x-y\| = \|A[x]\|$.
 $\begin{bmatrix} x \\ y \end{bmatrix}$ is convex in (xy) .
 $\begin{bmatrix} Lecturer: M. Fazel \end{bmatrix}$ is a linear map of the convex function $\|\cdot\|$, so f is convex in (xy) .
 $\begin{bmatrix} Lecturer: M. Fazel \end{bmatrix}$ is a linear map of the convex function $\|\cdot\|$.

More examples

• Show that the following
$$f:\mathbb{R}^{n} \to \mathbb{R}$$
 is convex:

$$f(x) = \max_{\substack{i=1,\dots,k}} \{ \|A^{(i)}x - b^{(i)}\| \} \text{ where } A^{(i)} \in \mathbb{R}^{m \times n}, \quad b^{(i)} \in \mathbb{R}^{m}, \quad and \quad \|\cdot\| \text{ is a norm} \}$$

proof: for each i,
$$g(x) = ||A^{(i)}x - b^{(i)}||$$
 is convex, because norm $||x||$
is a convex function and $g(x)$ is its composition with affine map
 $x \rightarrow A^{(i)}x - b^{(i)}$.
The formation convex because it is the pointwise max of convex

Then
$$f(x)$$
 is convex because it is the pointwise that of convex functions $g_i(x)$, $i=1,-,K$.

[Lecturer: M. Fazel]

Minimizing convex functions: Basic solution methods

Very few optimization problems have a closed-form solution (e.g., least-squares); most problems are solved using iterative methods.

One important **iterative method** is **gradient descent** (for unconstrained minimization of a differentiable, convex f):

given a starting point x^0 , run the following iterations for k = 1, 2, ...,

$$x^{k+1} = x^{k} - \alpha \nabla f(x^{k}) \qquad \mathbf{x}' = \mathbf{x}' - \alpha \nabla f(\mathbf{x}')$$

step size
$$x^{2} = \mathbf{x}' - \alpha \nabla f(\mathbf{x}')$$

[Lecturer: M. Fazel]

Convex Optimization: Basic Solution Methods (see Python notebook & TA session on 5/20) $x^{k+1} = x^k - \alpha \nabla f\left(x^k\right)$ f(2022) 2.0 4 - 9 1.5 - 8 ~0 3 1.0 0.5 (X) 2 2Z 0.0 -0.5 x^1 1 -1.0 -1.5 0 -2.0 -2 -1 0 1 2 -2 -1 0 2 X_1 х

[Lecturer: M. Fazel]