EE445 Mod4-Lec2: Convex Optimization

References: [Optimization Models: Calafiore \& El Ghaoui] Chapter 8

Topics for Module 4

HW5 - start early
$\rightarrow H W 6$ - extra credit - included in final exam

- Lec1: Convexity and Convex Sets
- Lec2: Convex Functions, Smooth Unconstrained Minimization \& Gradient Descent
- Lec3: Convex Optimization Problems: ML models I
- Lec4: Convex Optimization Problems: ML models II

Convex functions

From last lecture: $f: \mathbf{R}^{n} \mapsto \mathbf{R}$ is a convex function if

$$
f(\underline{\lambda x+(1-\lambda) y}) \leq \underset{\sim}{\leq} \underline{f(x)}+(1-\lambda) f(y)
$$

for all $x, y \in \mathbf{R}^{n}$ and all $0 \leq \lambda \leq 1$.

Convex

Nonconvex

- f is called concave if $-f$ is convex convex:
 \rightarrow - affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- exponential: $e^{a x}$, for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0 \quad \boldsymbol{x}>0$
- powers of absolute value: $\overline{|x|^{p}}$ on $\overline{\mathbf{R}, \text { for } p} \geq 1$

$\alpha=2$

$p=1$
concave:
\rightarrow affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbf{R}^{n}

 $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad f(x)=A x+b$affine functions are both convex and concave:

- affine function $f: \mathbf{R}^{n} \mapsto \mathbf{R}, f(x)=a^{T} x+b$
all norms are convex, e.g.,
- ℓ_{p} norms: $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1$
- ∞-norm: $\|x\|_{\infty}=\max _{k}\left|x_{k}\right|$

First-order convexity condition
f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)
$$

exists at each $x \in \operatorname{dom} f$
1st-order condition: differentiable f with convex domain is convex iff $f(y) \geq f(x)+\nabla f(x)^{T}(y-x)$ for all $x, y \in \operatorname{dom} f$

wedederestimatyor

Taylor expansion around x :

$$
\begin{aligned}
& f(y)=f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(x)(y-x) \\
& \text { (s } 1^{s t} \text { order (linear) } \\
& \quad \text { approximation }
\end{aligned}
$$

Second-order convexity condition

f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian $\nabla^{2} f(x) \in \mathbf{S}^{n}$,

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}, \quad i, j=1, \ldots, n
$$

exists at each $x \in \operatorname{dom} f$
2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0 \text { for all } x \in \operatorname{dom} f
$$

- in 1D: means $f^{\prime \prime}(x) \geq 0$ for all $x \in \operatorname{dom} f$

- note the distinction between: $\nabla^{2} f(x) \succeq 0$ versus "diag entries ≥ 0 ",$\frac{\partial^{2} f}{\partial x_{1}^{2}}$

Examples

quadratic function: $f(x)=(1 / 2) x>q^{T} x+r$ (with $P \in \mathbf{S}^{n}$) $\quad x \in \mathbb{R}^{n}$

$$
\nabla f(x)=P x+q, \quad \nabla^{2} f(x)=P
$$

convex if $P \succeq 0$
least-squares objective: $f(x)=\|A x-b\|_{2}^{2}$

convex (for any A)
quadratic-over-linear:
$f(x, y)=x^{2} / y$

Examples

quadratic function: $f(x)=(1 / 2) x^{T} P x+q^{T} x+r$ (with $P \in \mathbf{S}^{n}$)

$$
\nabla f(x)=P x+q, \quad \nabla^{2} f(x)=P
$$

convex if $P \succeq 0$
least-squares objective: $f(x)=\|A x-b\|_{2}^{2}=(A x-b)^{\top}(A x-b)$

$$
\nabla f(x)=2 A^{T}(A x-b), \quad \nabla^{2} f(x)=2 A^{T} A \geqslant 0
$$

convex (for any A)
quadratic-over-linear:

convex for $y>0$

Examples

quadratic function: $f(x)=(1 / 2) x^{T} P x+q^{T} x+r\left(\right.$ with $\left.P \in \mathbf{S}^{n}\right)$

$$
\nabla f(x)=P x+q, \quad \nabla^{2} f(x)=P
$$

convex if $P \succeq 0$
least-squares objective: $f(x)=\|A x-b\|_{2}^{2}$

$$
\nabla f(x)=2 A^{T}(A x-b), \quad \nabla^{2} f(x)=2 A^{T} A
$$

convex (for any A) quadratic-over-linear: $f(x, y)=x^{2} / y$ (See Friday $5 / 20$ session for example details)

$$
\underbrace{\nabla^{2} f(x, y)}=\frac{2}{y^{3}}\left[\begin{array}{cc}
y^{2} & -x y \\
-x y & x^{2}
\end{array}\right]=\frac{2}{y^{3}}\left[\begin{array}{c}
y \\
-x
\end{array}\right]\left[\begin{array}{c}
y \\
-x
\end{array}\right]^{T} \succeq 0
$$

convex for $y>0$

Epigraph of a function

epigraph of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

$$
\text { epi } f=\left\{(x, t) \in \underline{\mathbf{R}^{n+1}} \mid x \in \operatorname{dom} f, f(x) \leq t\right\}
$$

this notion connects the definitions of convex functions with convex sets: function f is convex if and only if epi f is a convex set

Proof of: if f is convex function, then the set epif is a convex set (suppose $\operatorname{dom} f=\mathbb{R}^{n}$ for simplicity)
given: $\left(x_{1}, t_{1}\right) \in$ epif (i.e., $\left.f\left(x_{1}\right) \leq t_{1}\right)$
and $\left(x_{2}, t_{2}\right)$ eepif (ie., $\left.f\left(x_{2}\right) \leqslant t_{2}\right)$
show that: $\quad \forall 0 \leq \theta \leq 1:\left(\theta x_{1}+(1-\theta) x_{2}, \theta t_{1}+(1-\theta) t_{2}\right) \in$ epif
from def. of epigraph, this is the same as:

$$
f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta t_{1}+(1-\theta) t_{2}
$$

to show it, first use convexity of f :

$$
f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta \underbrace{f\left(x_{1}\right)}_{\leq t_{1}}+(1-\theta) \underbrace{f\left(x_{2}\right)}_{\leq t_{2}} \leq \theta t_{1}+(1-\theta) t_{2}
$$

then use $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in$ epif
DONE

Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify the definition: show for all $x, y \in \operatorname{dom} f$ and all $0 \leq \lambda \leq 1$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

2. for twice differentiable functions, show $\nabla^{2} f(x) \succeq \overbrace{0}^{\Delta}$ positive semidefinite
3. show that f is obtained from simple convex functions by operations that preserve convexity:

- nonnegative weighted sum
- composition with affine function
pointwise maximum \rightarrow partial minimization

1. Positive weighted sum
nonnegative multiple: $\underline{\alpha f}$ is convex if f is convex, $\alpha \geq 0$

- $f(x)=\underbrace{\|x\|_{2}}+\underbrace{3\|x\|_{1}}, \sum_{i=1}^{n}\left|x_{i}\right|$

\Rightarrow convex
- $f(x)=\sum_{i=1}^{n} e^{x_{i}}$
\Rightarrow convex
(this extends to infinite sums, integrals)
[EE445 Mod4-L1]

2. Composition with an affine function

$$
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Consider the affine function $x \mapsto A x+b$, with $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$, then the function $g(x)=f(A x+\bar{b})$ is a convex function if f is convex examples

- (any) norm of an affine function: $g(x)=\|A x+b\|$

$$
\text { - } \begin{aligned}
f(x) & =\sum_{i=1}^{n} e^{x_{i}} \quad \begin{array}{l}
x \rightarrow A x+b \\
g(x)
\end{array}=f(A x+b)=\sum_{i=1}^{n} e^{\left(a_{i}^{\top} x+b_{i}\right)} \quad \Rightarrow a_{i}^{\top} x+b_{i}
\end{aligned} \quad A=\text { convex } \quad\left[\begin{array}{c}
a_{i}^{\top} \\
\vdots \\
a_{m}^{\top}
\end{array}\right]
$$

3. Pointwise maximum

If $f_{1}, \ldots, \underline{f_{m}}$ are convex, then $f(x)=\max \left\{\underline{f_{1}(x)}, \ldots, \underline{f_{m}(x)}\right\} \underline{\text { is convex }}$ note: this is maximum is taken pointwise, meaning for every x, look at the value of $f_{1}(x), \ldots, f_{m}(x)$ and take the largest of them (at that x)

examples

- piecewise-linear function: $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ is convex

$$
f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}
$$

4. Partial minimization
if $f(x, y)$ is convex in (x, y) (note that this means jointly convex in the variables) and C is a convex set, then

$$
g(x)=\min _{y \in C} f(x, y)
$$

is also convex
example

$$
x \in \mathbb{R}^{n}, S \subset \mathbb{R}^{n}
$$

$$
f_{0}(x)=\operatorname{dist}(x, S)=\min _{y \in S}\|x-y\|
$$

is convex if S is convex
proof: first check if $f(x, y)=\|x-y\|$ is convex (jointly) in (x, y) :
$\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow \underbrace{[I-I}_{A}]\left[\begin{array}{l}x \\ y\end{array}\right]$ is a linear map, and $\|x-y\|=\left\|A\left[\begin{array}{l}x \\ y\end{array}\right]\right\|$ is composition of linear [Lecturer: M. Fazel] map $A\left[\begin{array}{l}x \\ y\end{array}\right]$ with convex function $\|\cdot\|$, so f is convex in (x, y).

More examples

- Show that the following $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex:

$$
f(x)=\max _{i=1, \ldots, k}\left\{\left\|A^{(i)} x-b^{(i)}\right\|\right\} \quad \text { where } \begin{aligned}
& A^{(i)} \in \mathbb{R}^{m \times n}, b^{(i)} \in \mathbb{R}^{m}, \\
& \text { and }\|\cdot\| \text { is a norm }
\end{aligned}
$$

proof: for each $i, g_{i}(x)=\left\|A^{(i)} x-b^{(i)}\right\|$ is convex, because norm $\|x\|$ is a convex function and $g(x)$ is its composition with affine map $x \rightarrow A^{(i)} x-b^{(i)}$.
Then $f(x)$ is convex because it is the pointwise max of convex functions $g_{i}(x), i=1, \sim, k$.

Minimizing convex functions: Basic solution methods

Very few optimization problems have a closed-form solution (e.g., least-squares); most problems are solved using iterative methods.

One important iterative method is gradient descent (for unconstrained minimization of a differentiable, convex f):
given a starting point x^{0}, run the following iterations for $k=1,2, \ldots$,

$$
\begin{array}{cl}
x^{k+1}=x^{k}-\alpha \nabla f\left(x^{k}\right) & x^{1}=x^{0}-\alpha \nabla f\left(x^{0}\right) \\
\text { step size } & x^{2}=x^{1}-\alpha \nabla f\left(x^{\prime}\right)
\end{array}
$$

Convex Optimization: Basic Solution Methods

(see Python notebook \& TA session on 5/20)

$$
x^{k+1}=x^{k}-\alpha \nabla f\left(x^{k}\right)
$$

