
EE445 Mod4-Lec2: Convex Optimization

References: [Optimization Models: Calafiore & El Ghaoui] Chapter 8
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Topics for Module 4

• Lec1: Convexity and Convex Sets
• Lec2: Convex Functions, Smooth Unconstrained Minimization & Gradient Descent
• Lec3: Convex Optimization Problems: ML models I
• Lec4: Convex Optimization Problems: ML models II
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Convex functions
From last lecture: f : Rn 7→ R is a convex function if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)

for all x, y ∈ Rn and all 0 ≤ λ ≤ 1.

Convex Nonconvex
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Examples on R

• f is called concave if −f is convex
convex:
• affine: ax+ b on R, for any a, b ∈ R
• exponential: eax, for any a ∈ R
• powers: xα on R++, for α ≥ 1 or α ≤ 0
• powers of absolute value: |x|p on R, for p ≥ 1

concave:
• affine: ax+ b on R, for any a, b ∈ R
• powers: xα on R++, for 0 ≤ α ≤ 1
• logarithm: log x on R++
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Examples on Rn

affine functions are both convex and concave:
• affine function f : Rn 7→ R, f(x) = aTx+ b

all norms are convex, e.g.,
• ℓp norms: ∥x∥p = (

∑n
i=1 |xi|p)1/p for p ≥ 1

• ∞-norm: ∥x∥∞ = maxk |xk|
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First-order convexity condition
f is differentiable if dom f is open and the gradient

∇f(x) =

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)
exists at each x ∈ dom f
1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f
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Second-order convexity condition
f is twice differentiable if dom f is open and the Hessian ∇2f(x) ∈ Sn,

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i, j = 1, . . . , n,

exists at each x ∈ dom f
2nd-order conditions: for twice differentiable f with convex domain
• f is convex if and only if

∇2f(x) ⪰ 0 for all x ∈ dom f

• in 1D: means f ′′(x) ≥ 0 for all x ∈ dom f

• note the distinction between: ∇2f(x) ⪰ 0 versus “diag entries ≥ 0"
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Examples

quadratic function: f(x) = (1/2)xTPx+ qTx+ r (with P ∈ Sn)

∇f(x) = Px+ q, ∇2f(x) = P

convex if P ⪰ 0
least-squares objective: f(x) = ∥Ax− b∥22

∇f(x) = 2AT (Ax− b), ∇2f(x) = 2ATA

convex (for any A)
quadratic-over-linear: f(x, y) = x2/y

∇2f(x, y) =
2

y3

[
y2 −xy
−xy x2

]
=

2

y3

[
y
−x

] [
y
−x

]T
⪰ 0

convex for y > 0
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Epigraph of a function

epigraph of f : Rn → R:

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t}

this notion connects the definitions of convex functions with convex sets:

function f is convex if and only if epi f is a convex set

[Lecturer: M. Fazel] [EE445 Mod4-L1] 11



Operations that preserve convexity

practical methods for establishing convexity of a function
1. verify the definition: show for all x, y ∈ dom f and all 0 ≤ λ ≤ 1,

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)

2. for twice differentiable functions, show ∇2f(x) ⪰ 0

3. show that f is obtained from simple convex functions by operations that preserve
convexity:
▶ nonnegative weighted sum
▶ composition with affine function
▶ pointwise maximum
▶ partial minimization
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1. Positive weighted sum

nonnegative multiple: αf is convex if f is convex, α ≥ 0

sum: f1 + f2 convex if f1, f2 convex

(this extends to infinite sums, integrals)
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2. Composition with an affine function

Consider the affine function x 7→ Ax+ b, with A ∈ Rm×n, b ∈ Rm,
then the function g(x) = f(Ax+ b) is a convex function if f is convex

examples
• (any) norm of an affine function: g(x) = ∥Ax+ b∥
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3. Pointwise maximum

If f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex

note: this is maximum is taken pointwise, meaning for every x, look at the value of
f1(x),. . . ,fm(x) and take the largest of them (at that x)

examples
• piecewise-linear function: f(x) = maxi=1,...,m(aTi x+ bi) is convex
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4. Partial minimization
if f(x, y) is convex in (x, y) (note that this means jointly convex in the variables) and C is a
convex set, then

g(x) = min
y∈C

f(x, y)

is also convex

example
distance from a point x to a set S:

f(x) = dist(x, S) = min
y∈S

∥x− y∥

is convex if S is convex
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More examples
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Minimizing convex functions: Basic solution methods

Very few optimization problems have a closed-form solution (e.g., least-squares); most
problems are solved using iterative methods.

One important iterative method is gradient descent (for unconstrained minimization of a
differentiable, convex f):

given a starting point x0, run the following iterations for k = 1, 2, . . .,

xk+1 = xk − α∇f
(
xk

)
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Minimizing convex functions: Basic Solution Methods

xk+1 = xk − α∇f
(
xk

)
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