EE445 Mod4-Lec2: Convex Optimization

References: [Optimization Models: Calafiore & El Ghaoui] Chapter 8
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Topics for Module 4

Lecl: Convexity and Convex Sets

Lec2: Convex Functions, Smooth Unconstrained Minimization & Gradient Descent

Lec3: Convex Optimization Problems: ML models |

Lec4: Convex Optimization Problems: ML models Il
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Convex functions

From last lecture: f: R" — R is a convex function if

F (2o + (1= Ny) <M @) + (1= N f)

forall z,y e R" and all 0 < XA < 1.
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Examples on R

e fis called concave if —f is convex
convex:

e affine: axz +bon R, for any a,b € R

e exponential: ¢®, for any a € R

® powers: z*on Ry, fora>1ora<0

® powers of absolute value: |z|P on R, forp > 1

concave:

e affine: ax +bon R, forany a,b € R
® powers: z*on Ry, for0<a <1
® logarithm: logz on Ry
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Examples on R"

affine functions are both convex and concave:
e affine function f: R" — R, f(z) =a’2x+b

all norms are convex, e.g.,

® (, norms: |lzl|, = (>°", \mi\p)l/p forp>1

® oo-norm: ||z]lec = maxy [Tk
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First-order convexity condition
f is differentiable if dom f is open and the gradient

_ (9f(z) Of(x) of (z)
Vi(z) = < Ox1 = Oxe ' Oz >

exists at each z € dom f
1st-order condition: differentiable f with convex domain is convex iff

fly) > f(x) + Vf(a:)T(y —x) forall z,y € dom f

ueelesestimator [EE445 Moda-L1]



Second-order convexity condition

f is twice differentiable if dom f is open and the Hessian V2 f(z) € S",
_ 9*f(@)

] —
J 6:@8:@-’

V2 f(x)

t,7=1,...,n,

exists at each z € dom f
2nd-order conditions: for twice differentiable f with convex domain

e fis convex if and only if
V2f(z) =0 forall z € dom f

® in 1D: means f”(x) > 0 for all z € dom f
® note the distinction between: V2f(x) = 0 versus “diag entries > 0"
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Examples

quadratic function: f(z) = (1/2)zT Pz + ¢Tx + r (with P € S™)
Vf(z)=Px+q, V2f(z) =P

convex if P >0
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Examples

quadratic function: f(z) = (1/2)zT Pz + ¢Tx + r (with P € S™)
Vf(z)=Px+q, V2f(z) =P

convex if P >0
least-squares objective: f(r) = ||Az — b||3

Vfi(z)=24T(Az —b),  V2f(z) =24TA

convex (for any A)
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Examples

quadratic function: f(z) = (1/2)zT Pz + ¢Tx + r (with P € S™)
Vf(z)=Px+q, V2f(z) =P

convex if P >0
least-squares objective: f(r) = ||Az — b||3

Vfi(z)=24T(Az —b),  V2f(z) =24TA

convex (for any A)
quadratic-over-linear: f(z,y) = 22/y

onen-3[ %, 7]-3 2] 2]

Ty T y | —x

convex for y > 0
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Epigraph of a function

epigraph of f: R"” — R:

epif = {(z,t) e R""! |z € dom f, f(x) <t}

this notion connects the definitions of convex functions with convex sets:

function f is convex if and only if epi f is a convex set
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Operations that preserve convexity

practical methods for establishing convexity of a function
1. verify the definition: show for all z,y € dom f and all 0 < X <1,

(2w + (1= Ny) <M (@) + (1= N f)

2. for twice differentiable functions, show V2f(z) = 0
3. show that f is obtained from simple convex functions by operations that preserve
convexity:
» nonnegative weighted sum
> composition with affine function
» pointwise maximum
» partial minimization
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1. Positive weighted sum
nonnegative multiple: «f is convex if f is convex, a > 0

sum: f1 + fo convex if fi, fo convex

(this extends to infinite sums, integrals)
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2. Composition with an affine function

Consider the affine function  — Ax + b, with A € R™*", b € R™,
then the function g(x) = f(Axz + b) is a convex function if f is convex

examples

e (any) norm of an affine function: g(x) = || Az + b||
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3. Pointwise maximum

If fi, ..., fm are convex, then f(z) = max{fi(x),..., fm(z)} is convex

note: this is maximum is taken pointwise, meaning for every z, look at the value of
fi(x),...,fm(x) and take the largest of them (at that x)

examples

e piecewise-linear function: f(z) = maxizl,m,m(aiTx + b;) is convex
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4. Partial minimization

if f(z,y) is convex in (x,y) (note that this means jointly convex in the variables) and C'is a
convex set, then

g(x) = ryrgg f(z,y)

is also convex

example
distance from a point x to a set S:

f(z) = dist(z, S) = min ||z — y||
yeS

is convex if S is convex
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More examples
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Minimizing convex functions: Basic solution methods

Very few optimization problems have a closed-form solution (e.g., least-squares); most
problems are solved using iterative methods.

One important iterative method is gradient descent (for unconstrained minimization of a
differentiable, convex f):

given a starting point z°, run the following iterations for k = 1,2, .. .,

gF =gk —avf (xk)
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Minimizing convex functions: Basic Solution Methods
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