EE445 Mod4-Lec1: Convexity and Convex Sets

References: [Optimization Models: Calafiore \& El Ghaoui] Chapter 8

Topics for Module 4

- Fri May 20-is in different room : GUG 218 (Guggenheim Hall)
- Lec1: Convexity and Convex Sets
- Lec2: Convex Functions, Smooth Unconstrained Minimization \& Gradient Descent
- Lec3: Convex Optimization Problems: ML models I
- Lec4: Convex Optimization Problems: ML models II

Optimization: Overview

A general optimization problem has the form egg., least-norm prob:

$$
\left[\begin{array} { l l }
{ \operatorname { m i n i m i z e } _ { x } } & { f _ { 0 } (x) } \\
{ \text { subject to } } & { f _ { i } (x) \leq b _ { i } , \quad i = 1 , \ldots , m , }
\end{array} \left[\begin{array}{cl}
\min _{\boldsymbol{x}} & \|\boldsymbol{x}\|^{2} \\
\text { s.t. } & \mathbf{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}\right.\right.
$$

with components

- $x=\left(x_{1}, \ldots, x_{n}\right)$ - optimization variable $\quad x \in \mathbb{R}^{\boldsymbol{n}}$

$$
\left[\begin{array}{l}
A
\end{array}\right][x]=b
$$

- $f_{0}: \overline{\mathbf{R}^{n} \rightarrow \mathbf{R}-\text { objective function }}$
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ - constraint functions; b_{i} - constraint bounds

$$
\underbrace{f_{i}(x)-b_{i}}_{\text {can be seen as new constraint function }} \leq 0
$$

Optimization: Applications

Many applications:

- Data fitting and regression
- Classification (train a classifier)
- Image processing
- Portfolio optimization
- Optimal control (design control law for
- Sensor placement
a robot)
- Medical treatment planning
- Routing and scheduling
- Recommender systems

Optimization: Problem Classes

There are different classes of optimization problems, which can determine a problem's difficulty and solution method:

- Constrained vs. Unconstrained
- Smooth vs. Nonsmooth

- Convex vs. Nonconvex
quote from Prof. Terry Rockafellar (UW Math)
Other important considerations include problem size, special structure such as sparsity, and uncertainty in data or model parameters.

Optimization: Problem Classes

An important class: convex optimization problems
"With only a bit of exaggeration, we can say that if you formulate a practical problem as a convex optimization problem, then you have solved the original problem."

Quote from: S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Convex Optimization

A convex optimization problem has objective and constraint functions that satisfy the inequality

$$
f_{i}(\lambda x+(1-\lambda) y) \leq \lambda f_{i}(x)+(1-\lambda) f_{i}(y)
$$

for all $x, y \in \mathbf{R}^{n}$ and all $0 \leq \lambda \leq 1$.

Convex Optimization

A convex optimization problem has objective and constraint functions that satisfy the inequality
mixture of $x_{1} y=$ conves combination

$$
f_{i}(\lambda x+(1-\lambda) y) \leq \lambda f_{i}(x)+(1-\lambda) f_{i}(y) \quad \begin{aligned}
& \boldsymbol{\lambda}=0: \quad y \\
& \boldsymbol{\lambda}=1: \boldsymbol{x}
\end{aligned}
$$

for all $x, y \in \mathbf{R}^{n}$ and all $0 \leq \lambda \leq 1$.

Convex

Nonconvex

Convex sets

- Convex functions are directly related to convex sets: the set defined by

$$
\left.\left\{x \in \mathbf{R}^{n} \mid f_{i}(x) \leq 0\right\} \quad i=1, \ldots, m\right\}
$$

is a convex set if the functions f_{i} are convex (will see more later)

- the def of a convex set is a generalization of the def of a subspace (and affine set), so we start by reviewing these
- we'll then define convex set, convex hulls, ...
- examples

Subspaces

linear combination
$S \subseteq \mathbf{R}^{n}$ is a subspace if for $x, y \in S, \quad \lambda, \mu \in \mathbf{R} \Longrightarrow \lambda x+\mu y \in S$ geometrically: $x, y \in S \Rightarrow$ plane through $0, x, y \subseteq S$

representations
$\operatorname{range}(A)=\left\{A w \mid w \in \mathbf{R}^{q}\right\}$
$=\left\{w_{1} a_{1}+\cdots+w_{q} a_{q} \mid w_{i} \in \mathbb{R}\right\}=\operatorname{span}\left(a_{1}, a_{2}, \ldots, a_{q}\right)$

where $B=$

Subspaces

$\rightarrow S \subseteq \mathbf{R}^{n}$ is a subspace if for $x, y \in S, \quad \lambda, \mu \in \mathbf{R} \Longrightarrow \lambda x+\mu y \in S$ geometrically: $x, y \in S \Rightarrow$ plane through $0, x, y \subseteq S$ representations

$$
\begin{aligned}
\operatorname{range}(A) & =\left\{A w \mid w \in \mathbf{R}^{q}\right\} \\
& =\left\{w_{1} a_{1}+\cdots+w_{q} a_{q} \mid w_{i} \in \mathbf{R}\right\}=\operatorname{span}\left(a_{1}, a_{2}, \ldots, a_{q}\right)
\end{aligned}
$$

where $A=\frac{\left[\begin{array}{lll}a_{1} & \cdots & a_{q}\end{array}\right] ; \text { and }}{\underline{\text { nullspace }(B)}}=\{x \mid B x=0\}$

$$
=\left\{x \mid b_{1}^{T} x=0, \ldots, b_{p}^{T} x=0\right\}
$$

where $B=\left[\begin{array}{c}b_{1}^{T} \\ \hline \vdots \\ \text { [Lecturer: M. Fazel] } \\ b_{p}^{T}\end{array}\right]$

Affine sets
 $$
\mu=1-\lambda \quad \lambda x+(1-\lambda) y
$$

$\rightarrow S \subseteq \mathbf{R}^{n}$ is affine if for $x, y \in S, \lambda, \mu \in \mathbf{R}, \underline{\lambda+\mu=1} \Longrightarrow \lambda x+\mu y \in S$ geometrically: $x, y \in \widetilde{S \Rightarrow \text { line through } x}, y \subseteq S$

via linear equalities

$$
\begin{aligned}
S & =\left\{x \mid b_{1}^{T} x=\tilde{d}_{1}, \ldots, b_{p}^{T} x=\widetilde{d}_{p}\right\} \\
& =\{x \mid B x=d\}
\end{aligned}
$$

Convex sets
$S \subseteq \mathbf{R}^{n}$ is a convex set if

$$
\mu=1-\lambda
$$

$$
\lambda x+(1-\lambda) y
$$

$$
x, y \in S, \quad \lambda, \mu \geq 0, \lambda \underline{\lambda+\mu=1} \Longrightarrow \lambda x+\mu y \in S
$$

or equivalently, C is convex if

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

$$
\underbrace{x}_{\lambda=0} y
$$

geometrically: $\underline{x, y \in S} \Rightarrow \underline{\text { segment }[x, y] \subseteq S}$
examples (one convex, two nonconvex sets)

non-consex

non convex

convex

Combinations and hulls

consider combinations of more than 2 points: $y=\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}$ is a

- linear combination of x_{1}, \ldots, x_{k}
- affine combination if $\sum_{i} \theta_{i}=1$
- convex combination if $\sum_{i} \theta_{i}=1, \theta_{i} \geq 0$
- conic combination if $\theta_{i} \geq 0$
(linear,...) hull of S :
set of all (linear, ...) combinations from S

$$
\begin{aligned}
& \text { linear hull: } \text { span }(S) \\
& \text { affine hull: } \operatorname{Aff}(S) \\
& \rightarrow \frac{\text { convex hull: }}{\text { conic hull: }} \operatorname{Cos}(S) \\
& \operatorname{Cone}(S)
\end{aligned}
$$

Convex combination and convex hull

convex combination of x_{1}, \ldots, x_{k} : any point x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{k} x_{k}
$$

$$
\begin{aligned}
& S=\left\{x_{1}, x_{2}\right\} \\
& \operatorname{Co}(S)
\end{aligned}
$$

with $\theta_{1}+\cdots+\theta_{k}=1, \theta_{i} \geq 0$
convex hull, denoted by $\mathrm{Co}(S)$: set of all convex combinations of points in S $S=$ set of discrete points

co(s)

Hyperplanes and halfspaces
hyperplane: set of the form $\left\{x \mid a^{T} x=b\right\} \quad(a \neq 0)$

halfspace: set of the form $\left\{x \mid a^{T} x \leq b\right\}(a \neq 0)$

- are halfspaces affine sets? No!
- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls

(Euclidean) ball with center x_{c} and radius r :

$$
\boldsymbol{B}\left(\boldsymbol{x}_{\boldsymbol{c}}, \boldsymbol{r}\right)=\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}=\left\{x_{c}+r u \mid\|u\|_{2} \leq 1\right\}
$$

convex set

Ellipsoids
ellipsoid: set of the form $\quad \overbrace{\left(x \mid x-x_{c}\right)^{T} \underbrace{P^{-1}}\left(x-x_{c}\right)}^{\text {len }} \leq 1\}$
with $P \in \mathbf{S}_{++}^{n}$ (ie., P is a symmetric, positive definite matrix)

$$
\begin{gathered}
P=r^{2} I \quad r>0 \\
\left(x-x_{c}\right)^{\top}\left(r^{2} I\right)^{-1}\left(x-x_{c}\right) \leq 1 \\
\frac{1}{r^{2}}\left(x-x_{c}\right)^{\top}\left(x-x_{c}\right) \leq 1 \\
\left\|x-x_{c}\right\|^{2} \leq r^{2} \\
\left\|x-x_{c}\right\| \leq r
\end{gathered}
$$

convex set ? yes.

Norm balls \& norm cones

Recall: norm: a function $\|\cdot\|$ that satisfies

$$
\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}
$$

- $\|x\| \geq 0 ;\|x\|=0$ if and only if $x=0$
- $\|t x\|=|t|\|x\|$ for $t \in \mathbf{R}$
- $\|x+y\| \leq\|x\|+\|y\|$
notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text {symb }}$ is a particular norm norm ball with center x_{c} and radius $r:\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}$
norm cone:
norm balls and cones are convex sets

Norm balls \& norm cones

Recall: norm: a function $\|\cdot\|$ that satisfies

- $\|x\| \geq 0 ;\|x\|=0$ if and only if $x=0$
- $\|t x\|=|t|\|x\|$ for $t \in \mathbf{R}$
- $\|x+y\| \leq\|x\|+\|y\|$
notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text {symb }}$ is a particular norm
norm ball with center x_{c} and radius $r:\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}$
norm cone: $\{(x, t) \mid\|x\| \leq t\}$
$\left\{(x, t) \mid\|x\|_{2} \leq t\right\} \quad x \in \mathbb{R}^{2}, t \in \mathbb{R}$
norm balls and cones are convex sets

Norm balls \& norm cones

Recall: norm: a function $\|\cdot\|$ that satisfies

- $\|x\| \geq 0 ;\|x\|=0$ if and only if $x=0$
- $\|t x\|=|t|\|x\|$ for $t \in \mathbf{R}$
- $\|x+y\| \leq\|x\|+\|y\|$
notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text {symb }}$ is a particular norm
norm ball with center x_{c} and radius $r:\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}$
norm cone: $\{(x, t) \mid\|x\| \leq t\}$
norm balls and cones are convex sets
\rightarrow can prove this formally using norm properties listed above)
ℓ_{p} norms
ℓ_{p} norms on \mathbf{R}^{n} : for $p \geq 1, \quad\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$,, for $p=\infty,\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$
- ℓ_{2} norm is Euclidean norm $\|x\|_{2}=\sqrt{\sum_{i} x_{i}^{2}}$
- $\overline{\ell_{1}}$ norm is sum-abs-values $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$
- $\underline{\ell_{\infty}}$ norm is max-abs-value $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$ corresponding norm balls (in \mathbf{R}^{2}):

$$
\begin{aligned}
& \left\{x \mid\|x\|_{\infty} \leq 1\right\} \\
= & \left\{x\left|\left|x_{1}\right| \leq 1,\left|x_{2}\right| \leq 1\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{x \mid\|x\|_{1} \leqslant 1\right\} \\
& =\left\{x| | x_{1}\left|+\left|x_{2}\right| \leq 1\right\}\right. \\
& x_{1}+x_{2} \leqslant 1 \\
& x_{1}-x_{2} \leqslant 1 \\
& -x_{1}+x_{2} \leqslant 1 \\
& -x_{1}-x_{2} \leqslant 1
\end{aligned}
$$

[EE445 Mod4-L1]

Polyhedra (pol ytope)
solution set of finitely many linear inequalities and equalities

$$
\left.\begin{array}{ll}
\{x \mid A x \preceq b, \quad C x=d
\end{array}\right\}=\left\{x \left\lvert\, \quad \begin{array}{l}
a_{i}^{\top} x \leq b_{i} \quad i=1, \ldots, m, \\
C_{i}^{\top} x=d_{i} \quad i=1, \ldots, p
\end{array}\right.\right\}
$$

$\left(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq\right.$ is componentwise inequality)

$$
a_{1}^{\top} x \leq b_{1}
$$

$$
i=5
$$

polyhedron is the intersection of a finite number of halfspaces and hyperplanes

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls,
\ldots..) by operations that preserve convexity

- intersection
- affine functions

Convexity preserved under intersection
important property: the intersection of (any number of, even infinite) convex sets is convex.

$$
\text { proof: } \forall x_{1} \in C_{1} \cap C_{2}
$$

examples: $\forall x_{2} \in C_{1} \cap C_{2}$

$$
\left.\begin{array}{rl}
x_{1}, x_{2} \in C_{1} \& C_{1} \text { convex set } & \Rightarrow \theta x_{1}+(1-\theta) x_{2} \in C_{1}, 0 \leq \theta \leq 1 \\
x_{1}, x_{2} \in C_{2} \& C_{2} " \| \Rightarrow x_{1}+(1-\theta) x_{2} \in C_{2}, 0 \leqslant \theta \leqslant 1
\end{array}\right\}, \underbrace{}_{\text {line segment }\left[x_{1}, x_{2}\right]} \quad \theta x_{1}+(1-\theta) x_{2} \in \underbrace{C_{1} \cap C_{2}} 0 \leqslant \theta \leq 1
$$

example: "Slab"
given $a \in \mathbb{R}^{n}, b_{1}, b_{2} \in \mathbb{R}$,

$$
\rightarrow\left\{x \mid \quad a^{\top} x \leq b_{1}, a^{\top} x \leq b_{2}\right\}
$$

convex?
yes, intersection of 2 halfspaces
 (using intersection property)
illustration:

$$
\begin{aligned}
& a=\left[\begin{array}{c}
-1 \\
+1
\end{array}\right], b_{1}=0 \\
& a^{\top} x \leq 0 \\
& {\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq-} \\
& -x_{1}+x_{2} \leq-1
\end{aligned}
$$

$$
b_{2}=-1 \quad\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq-1
$$

Convexity preserved under intersection
[this ex. tallen from: Boyd \& Vandenberghes Convex Optimization, 2004. page 371
example:

$$
S=\left\{x \in \mathbf{R}^{m}| | p(t) \mid \leq 1 \text { for }|t| \leq \pi / 3\right\}
$$

where $p(t)=x_{1} \cos t+x_{2} \cos 2 t+\cdots+x_{m} \cos m t$ for $m=2$:

$$
\begin{aligned}
& p(t)=x_{1} \cos t+x_{2} \cos 2 t=\left[\begin{array}{ll}
\cos t & \cos 2 t
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& S=\left\{x \in \mathbb{R}^{2} \mid-1 \leq p(t) \leq 1 \text { for all }-\pi / 3 \leq t \leq \pi / 3\right\}
\end{aligned}
$$

$t=t_{0}$:

$$
\begin{aligned}
& t=t_{0}: \\
& S_{t_{0}}=\{x \in \mathbb{R}^{2} \left\lvert\,-1 \leq \underbrace{\left(\begin{array}{cc}
\cos t_{0} & c_{2} u_{0}
\end{array}\right]}_{a_{t_{0}}}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq 1\right.\}=\left\{x \mid-1 \leq a_{\uparrow}^{\top} x \leq 1\right\} \\
& \text { change : get an } a_{1} \text { each time }
\end{aligned}
$$

change: get an a_{t} each time, get a slab. So, $S=$ intersection of (many) slabs, therefore it's convex!

Convexity preserved under affine function
suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is affine $\left(f(x)=A x+b\right.$ with $\left.A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}\right)$, then the image of a convex set under f is convex

