
EE445 Mod4-Lec1: Convexity and Convex Sets

References: [Optimization Models: Calafiore & El Ghaoui] Chapter 8
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Topics for Module 4

• Lec1: Convexity and Convex Sets

• Lec2: Convex Functions, Smooth Unconstrained Minimization & Gradient Descent

• Lec3: Convex Optimization Problems: ML models I

• Lec4: Convex Optimization Problems: ML models II
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Optimization: Overview

A general optimization problem has the form

minimizex f0(x)
subject to fi(x) bi, i = 1, . . . ,m,

with components

• x = (x1, . . . , xn) - optimization variable

• f0 : Rn ! R - objective function

• fi : Rn ! R - constraint functions; bi - constraint bounds
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Optimization: Applications

Many applications:

• Data fitting and regression

• Classification

• Image processing

• Portfolio optimization

• Recommender systems

• Optimal control

• Sensor placement

• Medical treatment planning

• Routing and scheduling

• . . .
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Optimization: Problem Classes

There are different classes of optimization problems, which can determine a problem’s

difficulty and solution method:

• Constrained vs. Unconstrained

• Smooth vs. Nonsmooth

• Convex vs. Nonconvex

Other important considerations include problem size, special structure such as sparsity, and

uncertainty in data or model parameters.
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Optimization: Problem Classes

An important class: convex optimization problems

“With only a bit of exaggeration, we can say that if you formulate a practical problem as a

convex optimization problem, then you have solved the original problem."

Quote from: S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

2004.
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Convex Optimization

A convex optimization problem has objective and constraint functions that satisfy the

inequality

fi
⇣
�x+ (1� �)y

⌘
 �fi(x) + (1� �)fi(y)

for all x, y 2 Rn
and all 0  �  1.

Convex Nonconvex

Important consequence: in a convex problem, no “local minima"
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Convex sets

• Convex functions are directly related to convex sets:

the set defined by

{x 2 Rn | fi(x)  0}

is a convex set if the functions fi are convex (will see more later)

• the def of a convex set is a generalization of the def of a subspace (and affine set), so

we start by reviewing these

• we’ll then define convex set, convex convex hulls, . . .

• examples
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Subspaces

S ✓ Rn
is a subspace if for x, y 2 S, �, µ 2 R =) �x+ µy 2 S

geometrically: x, y 2 S ) plane through 0, x, y ✓ S

representations
range(A) = {Aw | w 2 Rq}

= {w1a1 + · · ·+ wqaq | wi 2 R} = span(a1, a2, . . . , aq)

where A =
⇥
a1 · · · aq

⇤
; and

nullspace(B) = {x | Bx = 0}
= {x | bT1 x = 0, . . . , bTp x = 0}

where B =

2

64
bT1
.
.
.

bTp

3

75
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Affine sets
S ✓ Rn

is affine if for x, y 2 S, �, µ 2 R, �+ µ = 1 =) �x+ µy 2 S
geometrically: x, y 2 S ) line through x, y ✓ S

representations: range of affine function

S = {Az + b | z 2 Rq}

via linear equalities

S = {x | bT1 x = d1, . . . , b
T
p x = dp}

= {x | Bx = d}
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Convex sets
S ✓ Rn

is a convex set if

x, y 2 S, �, µ � 0, �+ µ = 1 =) �x+ µy 2 S

or equivalently,

x1, x2 2 C, 0  ✓  1 =) ✓x1 + (1� ✓)x2 2 C

geometrically: x, y 2 S ) segment [x, y] ✓ S
examples (one convex, two nonconvex sets)
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Combinations and hulls

y = ✓1x1 + · · ·+ ✓kxk is a

• linear combination of x1, . . . , xk
• affine combination if

P
i ✓i = 1

• convex combination if
P

i ✓i = 1, ✓i � 0
• conic combination if ✓i � 0

(linear,. . . ) hull of S:

set of all (linear, . . . ) combinations from S

linear hull: span(S)
affine hull: A↵(S)
convex hull: Co(S)
conic hull: Cone(S)
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Convex combination and convex hull

convex combination of x1,. . . , xk: any point x of the form

x = ✓1x1 + ✓2x2 + · · ·+ ✓kxk

with ✓1 + · · ·+ ✓k = 1, ✓i � 0

convex hull, denoted by CoS: set of all convex combinations of points in S
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Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a 6= 0)

halfspace: set of the form {x | aTx  b} (a 6= 0)

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls

(Euclidean) ball with center xc and radius r:

B(xc, r) = {x | kx� xck2  r} = {xc + ru | kuk2  1}
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Ellipsoids

ellipsoid: set of the form

{x | (x� xc)
TP�1(x� xc)  1}

with P 2 Sn
++ (i.e., P is a symmetric, positive definite matrix)
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Norm balls & norm cones

Recall: norm: a function k · k that satisfies

• kxk � 0; kxk = 0 if and only if x = 0
• ktxk = |t| kxk for t 2 R
• kx+ yk  kxk+ kyk

notation: k · k is general (unspecified) norm; k · ksymb is a particular norm

norm ball with center xc and radius r: {x | kx� xck  r}

norm cone: {(x, t) | kxk  t}

norm balls and cones are convex sets
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`p norms

`p norms on Rn
: for p � 1, kxkp = (

P
i |xi|p)

1/p ,, for p = 1, kxk1 = maxi |xi|

• `2 norm is Euclidean norm kxk2 =
qP

i x
2
i

• `1 norm is sum-abs-values kxk1 =
P

i |xi|• `1 norm is max-abs-value kxk1 = maxi |xi|
corresponding norm balls (in R2

):
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Polyhedra

solution set of finitely many linear inequalities and equalities

Ax � b, Cx = d

(A 2 Rm⇥n
, C 2 Rp⇥n

, � is componentwise inequality)

polyhedron is the intersection of a finite number of halfspaces and hyperplanes
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Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

x1, x2 2 C, 0  ✓  1 =) ✓x1 + (1� ✓)x2 2 C

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls,

. . . ) by operations that preserve convexity

I intersection

I affine functions
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Convexity preserved under intersection

important property: the intersection of (any number of, even infinite) convex sets is

convex.

examples:
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Convexity preserved under intersection

example:
S = {x 2 Rm | |p(t)|  1 for |t|  ⇡/3}

where p(t) = x1 cos t+ x2 cos 2t+ · · ·+ xm cosmt
for m = 2:

[Lecturer: M. Fazel] [EE445 Mod4-L1] 26

his ex takenfrom Boyd Vandenberghe ConvexOptimization2004
page377

m

ÉEÉÉIpct x cost the cost Cost cost II

t to
neat i stay

Me El al is In El
changet getan at eachtime get a slab

So S intersection of many slabs
therefore it's convex



Convexity preserved under affine function

suppose f : Rn ! Rm
is affine (f(x) = Ax+ b with A 2 Rm⇥n

, b 2 Rm
),

then the image of a convex set under f is convex

S ✓ Rn
convex =) f(S) = {f(x) | x 2 S} convex

examples
• scaling, translation

• projection

[Lecturer: M. Fazel] [EE445 Mod4-L1] 27

Antblaces convex

laces convex

Iti


