
EE445 Mod3-Lec4: Principal Component Regression &
Kernel PCA

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 1

Outline

1. Principal Component Regression (PCR)
2. Kernel PCA
3. (time permitting) Spectral Clustering

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 2

Part 1: PCR

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 3

What is Principal Component Regression (PCR)?

• Combining PCA with linear regression leads to principal components regression (PCR).
• PCR = PCA + linear regression:

▶ Choose how target number of principal components k
▶ Use PCA to define a feature vector

φ(x(i)) = (⟨x(i), u1 ⟩, . . . , ⟨x(i), uk ⟩)

as in Mod3-L3 containing the principal component scores x(i)—i.e., the projections onto
the u1, . . . , uk principal components

▶ Use least-squares linear regression (as in Module 2) with this model:

y(i) = φ(x(i))⊤θ + εi

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 4

Facts about PCR

• Why use it?: In regression analysis, when the independent variables appear
multicollinearly (independent variables are correlated), the general effect of the classical
regression method for least square estimates of regression coefficients will be poor, but
principal component analysis can overcome this deficiency effectively.

x1

x2

• PCR works well when the directions in which the original predictors vary most are the
directions that are predictive of the outcome

• PCR is very similar to ridge regression in a certain sense.
• Nice comparison between PCR and partial least squares

https://scikit-learn.org/stable/auto_examples/cross_decomposition/plot_pcr_vs_pls.html
[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 5

https://scikit-learn.org/stable/auto_examples/cross_decomposition/plot_pcr_vs_pls.html

Ridge Regression

• We saw Kernel regression with regularization in Mod2 Lec4 where ℓ2–regularization
was introduced to support numerical stability of the kernel matrix

• We can in general introduce a ∥ · ∥2 regularization term to vanilla least squares and this
is called ridge regression:

F (θ) =
1

2
∥Xθ − y∥2 + λ

2
∥θ∥22 =

1

2
θ⊤X⊤Xθ − y⊤Xθ +

1

2
y⊤y +

λ

2
θ⊤θ

first order : ∇F (θ) = X⊤Xθ−X⊤y+ λθ = 0 =⇒ θ̂ = (X⊤X + λI)−1X⊤y

• λ ≥ 0: a tuning parameter that controls the strength of the penalty term
▶ λ = 0: we get the linear regression estimate
▶ λ → ∞: we get θ̂ridge → 0
▶ λ ∈ (0,∞): balancing fitting a linear model of y given data X, and shrinking the

coefficients in θ

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 6

PCR and Ridge

• Write X = USV ⊤ so that

(X⊤X + λI)−1 = (V S⊤SV ⊤ + λI)−1

= (V S⊤SV ⊤ + λV V ⊤)−1

= (V (S⊤S + λI)V ⊤)−1

= V (S⊤S + λI)−1V ⊤ since V −1 = V ⊤

= V S+V ⊤, where S+ = diag(1/(σ2
1 + λ), . . . , 1/(σ2

n + λ), 0, . . . , 0)

=⇒ θ̂ = V S†V ⊤V S⊤U⊤y = V S†S⊤U⊤y =

n∑
i=1

σi
σ2
i + λ

viu
⊤
i y

• Hence, Ridge regression can be viewed as projecting the y vector onto the principal
component directions and then shrinking the projection using λ

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 7

PCR vs Ridge

• Ridge regression shrinks everything, but it never shrinks anything to zero.
• By contrast, PCR either does not shrink a component at all or shrinks it to zero.
• Yet another alternative is LASSO: assuming the features are orthonormal

min
θ

1

2
∥Xθ − y∥2 + λ

2
∥θ∥1 → θ̂j = θ̂olsj max

{
0, 1− mλ

|θ̂olsj |

}

which can set some coefficients to zero, and scales others

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 8

Part 2: Kernel PCA

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 9

Motivation

• when the data is non-linear, we may need a more complex polynomial function to
separate the data

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 10

Recall the Kernel "trick"

• Essence of Kernel trick:
▶ If we can write down an algorithm only in terms of ϕ(x(i))⊤ϕ(x(j)), then we don’t need

to explicitly enumerate ϕ(x(i)) for all the i ∈ {1, . . . ,m}
▶ Instead we can just compute K(x(i), x(j)) = ϕ(x(i))⊤ϕ(x(j))
▶ And we can even handle infinite dimensional feature maps ϕ(·)

• Examples:
▶ Linear kernel K(x, z) = z⊤x
▶ radial basis function K(x, z) = exp(−γ∥x− z∥2)
▶ polynomial kernels K(x, z) = (x⊤z + c)p

• Predictions only depend on training data through kernel function which is just a dot
product.

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 11

Rewrite PCA using Kernel "trick"
• Let u1, . . . , uk be the k largest principal components, and define matrix
U =

[
u1 · · · uk

]
• That is, the j-th column of U is the j-th eigenvector of the covariance matrix
Σ = 1

m

∑m
i=1 ϕ(x

(i))ϕ(x(i))⊤.
• Claim: Eigenvectors can be expressed as linear combination of features

Proof: Let (λ, v) be an eigenpair of Σ. Then we claim v =
∑m

i=1 αiϕ(x
(i)). Indeed,

Σv =
1

m

m∑
i=1

ϕ(x(i))ϕ(x(i))⊤v = λv =⇒

v =
1

λm

m∑
i=1

ϕ(x(i))ϕ(x(i))⊤v =
1

λm

m∑
i=1

(ϕ(x(i))⊤v)︸ ︷︷ ︸
scalar

ϕ(x(i))⊤

This completes the proof.
• Hence, finding the eigenvectors is equivalent to finding the coefficients αi[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 12

Rewrite PCA using Kernel "trick"
• That is, uj =

∑m
l=1 αjlϕ(x

(l)) for each j = 1, . . . , k

• Let’s find an expression for the αj ’s
• By substituting this back into the equation we get:

1

m

m∑
i=1

ϕ(x(i))ϕ(x(i))⊤

(
m∑
l=1

αjlϕ(x
(l))

)
= λj

m∑
l=1

αjlϕ(x
(l))

• Rewrite this as

1

m

m∑
i=1

ϕ(x(i))

(
m∑
l=1

αjlK(x(i), x(l))

)
= λj

m∑
l=1

αjlϕ(x
(l))

• Multiply by ϕ(x(s)) from the left to get

1

m

m∑
i=1

ϕ(x(s))⊤ϕ(x(i))

(
m∑
l=1

αjlK(x(i), x(l))

)
= λj

m∑
l=1

αjlϕ(x
(s))⊤ϕ(x(l))

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 13

Rewrite PCA using Kernel "trick"
• By plugging in the kernel and rearranging we get:

K2αj = mλjKαj =⇒ Kαj = mλjαj

We can remove a factor of K from both sides of the matrix (this only affect the
eigenvectors with zero eigenvalue, which will not be a principal component anyway):

• Since ∥uj∥2 = 1, we have that

m∑
i=1

m∑
l=1

αjlαjiϕ(x
(l))⊤ϕ(x(i)) = 1 =⇒ α⊤

j Kαj = 1 =⇒ λjmα⊤
j αj = 1

• Hence, for some feature vector x its projection on to the principal components is

ϕ(x)⊤uj =

m∑
i=1

αjiϕ(x)
⊤ϕ(x(i)) =

m∑
i=1

αjiK(x, x(i))

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 14

Summary of the Kernel Trick

• We showed that the eigenvectors (principal components) can be expressed as linear
combination of the features with some coefficients αi

• We showed that αi’s are eigenvectors of the kernel matrix, and have some
normalization property (norm equal to 1/(mλi))

• Showed the projection of a feature vector onto a pricipal component can be obtained
via the kernel matrix

ϕ(x)⊤uj =

m∑
i=1

αjiK(x, x(i))

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 15

Normalizing the Feature Space

• In general ϕ(x(i)) may not be zero mean
• We can recenter the features just like before

φ(x(i)) = ϕ(x(i))− 1

m

m∑
j=1

ϕ(x(j))

• The new kernel is K̃(x(i), x(j)) = φ(xi))⊤φ(x(j)) and without going through the
details, we can derive an expression for the new kernel in matrix form

K̃ = K − 1

m
K1− 1

m
1K +

1

m2
1K1

where 1 is a matrix with all elements equal to one.

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 16

Summary of Kernel PCA

• Pick a kernel
• Construct the normalized kernel matrix of the data:

K̃ = K − 1

m
K1− 1

m
1K +

1

m2
1K1

• Solve an eigenvalue problem:
K̃αi = λiαi

• For any data point (new or old), we can represent it as

y(j) =

m∑
i=1

αjiK(x, x(i)), j = 1, . . . , k

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 17

Example: De-noising images

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 18

Part 3: Spectral Clustering

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 19

What is spectral clustering?

• Goal is to group points based on links in a graph

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 20

How to create the graph?

• Given a distance metric, we compute the distance between each of our features
• It is common to use a Guassian Kernel (RBF) to compute the similarity between

features:

sij = S(i, j) = exp

(
−∥x(i) − x(j)∥2

σ2

)
• There are several popular constructions to transform a given set x(1), . . . , x(m) of data

points with pairwise similarities sij or pairwise distances dij into a graph.
▶ fully connected graph: Here we simply connect all points with positive similarity with

each other, and we weight all edges wij = sij
▶ k-nearest neighbor graphs: Here the goal is to connect vertex vi with vertex vj if vj is

among the k-nearest neighbors of vi.
▶ The ε-neighborhood graph: Here we connect all points whose pairwise distances are

smaller than ε

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 21

Graph Review

• Consider a graph G = (E, V) where V = {v1, . . . , vn} is the vertex set and E is the
set of

• the graph G is weighted—that is each edge between two vertices vi and vj carries a
non-negative weight wij ≥ 0.

• The weighted adjacency matrix (Module 1) of the graph is the matrix W

• The degree of vertex vi is di =
∑n

j=1wij and the matrix D is the degree matrix
• Graph Laplacian:

L = D −W

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 22

Spectral Clustering Algorithm

Input: Similarity matrix S ∈ Rm×m (pairwise similarities between edges) and number of
clusters k

Step 1: Build W , the (weighted) adjacency matrix of the corresponding graph: e.g.,
Step 2: Compute the graph Laplacian L = D −W

Step 3: Compute the first k eigenvectors u1, . . . , uk of L
CAUTION!: Here the k-first eigenvectors are those corresponding to the
smallest eigenvalues of L.

Step 4: Let U ∈ Rm×k be the matrix containing all the ui’s as columns
Step 5: For i = 1, . . . ,m, let y(i) ∈ Rk be the vector corresponding to the i-th row of

U

Step 6: Cluster the points (y(i) for i = 1, . . .m with the k-means algorithm into
clusters C1, . . . , Ck

Output: Clusters A1, . . . , Ak with Ai = {j| y(j) ∈ Ci}
[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 23

Example

go to Mod3-Lec4.ipynb

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 24

