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Spectral Clustering



Outline

1. Principal Component Regression (PCR)

2. Kernel PCA

3. (time permitting) Spectral Clustering
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Part 1: PCR
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What is Principal Component Regression (PCR)?

• Combining PCA with linear regression leads to principal components regression (PCR).

• PCR = PCA + linear regression:

I Choose how target number of principal components k
I Use PCA to define a feature vector

'(x(i)) = (hx(i), u1 i, . . . , hx(i), uk i)

as in Mod3-L3 containing the principal component scores x(i)
—i.e., the projections onto

the u1, . . . , uk principal components

I Use least-squares linear regression (as in Module 2) with this model:

y(i) = '(x(i))>✓ + "i

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 4



Facts about PCR

• Why use it?: In regression analysis, when the independent variables appear

multicollinearly (independent variables are correlated), the general effect of the classical

regression method for least square estimates of regression coefficients will be poor, but

principal component analysis can overcome this deficiency effectively.

x1

x2

• PCR works well when the directions in which the original predictors vary most are the

directions that are predictive of the outcome

• PCR is very similar to ridge regression in a certain sense.

• Nice comparison between PCR and partial least squares

https://scikit-learn.org/stable/auto_examples/cross_decomposition/plot_pcr_vs_pls.html
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Partial leastsquares PCR
unsupervised

PLS x IF Method
supervisedMethod

https://scikit-learn.org/stable/auto_examples/cross_decomposition/plot_pcr_vs_pls.html


Ridge Regression

• We saw Kernel regression with regularization in Mod2 Lec4 where `2–regularization

was introduced to support numerical stability of the kernel matrix

• We can in general introduce a k · k2 regularization term to vanilla least squares and this

is called ridge regression:

• � � 0: a tuning parameter that controls the strength of the penalty term

I � = 0: we get the linear regression estimate

I � ! 1: we get ✓̂ridge ! 0
I � 2 (0,1): balancing fitting a linear model of y given data X, and shrinking the

coefficients in ✓
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PCR and Ridge

• Write X = USV >

• Hence, Ridge regression can be viewed as projecting the y vector onto the principal

component directions and then shrinking the projection using �
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PCR vs Ridge

• Ridge regression shrinks everything, but it never shrinks anything to zero.

• By contrast, PCR either does not shrink a component at all or shrinks it to zero.

• Yet another alternative is LASSO: assuming the features are orthonormal

min
✓

1

2
kX✓ � yk2 + �

2
k✓k1 ! ✓̂j = ✓̂olsj max

(
0, 1� m�

|✓̂olsj |

)

which can set some coefficients to zero, and scales others
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Part 2: Kernel PCA
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Motivation

• when the data is non-linear, we may need a more complex polynomial function to

separate the data
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Recall the Kernel "trick"

• Essence of Kernel trick:

I If we can write down an algorithm only in terms of �(x(i))>�(x(j)), then we don’t need

to explicitly enumerate �(x(i)) for all the i 2 {1, . . . ,m}
I Instead we can just compute K(x(i), x(j)) = �(x(i))>�(x(j))
I And we can even handle infinite dimensional feature maps �(·)

• Examples:

I Linear kernel K(x, z) = z>x
I radial basis function K(x, z) = exp(��kx� zk2)
I polynomial kernels K(x, z) = (x>z + c)p

• Predictions only depend on training data through kernel function which is just a dot

product.
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Rewrite PCA using Kernel "trick"
• Let u1, . . . , uk be the k largest principal components, and define matrix

U =
⇥
u1 · · · uk

⇤
—i.e., the j-th column of U is the j-th eigenvector of the

covariance matrix

⌃ =
1

m

mX

i=1

�(x(i))�(x(i))>.

• Claim: Eigenvectors can be expressed as linear combination of features

• Hence, finding the eigenvectors is equivalent to finding the coefficients ↵i[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 12
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Rewrite PCA using Kernel "trick"
• That is, uj =

Pm
l=1 ↵jl�(x(l)) for each j = 1, . . . , k

• Let’s find an expression for the ↵j ’s
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Rewrite PCA using Kernel "trick"
• By plugging in the kernel and rearranging we get:

K2↵j = m�jK↵j =) K↵j = m�j↵j

We can remove a factor of K from both sides of the matrix (this only affect the

eigenvectors with zero eigenvalue, which will not be a principal component anyway):

• Since kujk2 = 1, we have that

• Hence, for some feature vector x its projection on to the principal components is
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Summary of the Kernel Trick

• We showed that the eigenvectors (principal components) can be expressed as linear

combination of the features with some coefficients ↵i

• We showed that ↵i’s are eigenvectors of the kernel matrix, and have some

normalization property (norm equal to 1/(m�i))

• Showed the projection of a feature vector onto a pricipal component can be obtained

via the kernel matrix

�(x)>uj =
mX

i=1

↵jiK(x, x(i))
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Normalizing the Feature Space

• In general �(x(i)) may not be zero mean

• We can recenter the features just like before

• The new kernel is K̃(x(i), x(j)) = '(xi))>'(x(j)) and without going through the

details, we can derive an expression for the new kernel in matrix form
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Summary of Kernel PCA
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Example: De-noising images
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Part 3: Spectral Clustering
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What is spectral clustering?

• Goal is to group points based on links in a graph

[Lecturer: L.J. Ratliff] [EE445 Mod3-L4] 20



How to create the graph?

• Given a distance metric, we compute the distance between each of our features

• It is common to use a Guassian Kernel (RBF) to compute the similarity between

features:

sij = S(i, j) = exp

 
�kx(i) � x(j)k2

�2

!

• There are several popular constructions to transform a given set x(1), . . . , x(m)
of data

points with pairwise similarities sij or pairwise distances dij into a graph.

I fully connected graph: Here we simply connect all points with positive similarity with

each other, and we weight all edges wij = sij
I k-nearest neighbor graphs: Here the goal is to connect vertex vi with vertex vj if vj is

among the k-nearest neighbors of vi.
I The "-neighborhood graph: Here we connect all points whose pairwise distances are

smaller than "
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Graph Review
• Consider a graph G = (E, V ) where V = {v1, . . . , vn} is the vertex set and E is the

set of
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nil GraphLaplacian L D W
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Spectral Clustering Algorithm
Input: Similarity matrix S 2 Rm⇥m

(pairwise similarities between edges) and number of

clusters k
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Example

go to Mod3-Lec4.ipynb
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