EE445 Mod3-Lec2: Principal Component Analysis & Regression

References:

- [CE-OptMod]: Chapter: 5.3.2
- Additional reference: Chapter 15 of "A Course in ML" by Hal Daumé (http://ciml.info/dl/v0_99/ciml-v0_99-all.pdf)

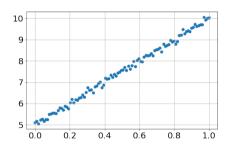
Outline

- 1. Principal Component Analysis
- 2. Principal Component Regression

What is PCA?

- Principal component analysis (PCA) is a technique of unsupervised learning widely used to "discover" the most important, or informative, directions in a data set.
- Aside unsupervised learning: i.e., learning from data without labels or observations—essentially with only features x and no observations y
- There are many reasons you may want to perform PCA on a data set
 - ▶ to visualize the data in a lower-dimensional space.
 - to understand the sources of variability in the data.
 - be to understand correlations between different coordinates of the data points, etc.

What is PCA?



- the majority of the variation of the data is contained in the direction at about 45 degrees from the x-axis
- In contrast, the direction at about 135 degrees contains very little variation.

go to: https://setosa.io/ev/principal-component-analysis/

What is PCA? Example

- Suppose we are given dataset $\{x^{(1)}, \dots, x^{(m)}\}$ of attributes of m different types of vehicles, such as their maximum speed, turn radius, and so on.
- Let $x^{(i)} \in \mathbb{R}^n$ with $n \ll m$
- ullet Unknown to us, two different attributes—some x_i and x_j —respectively give a car's
 - 1. maximum speed measured in miles per hour,
 - 2. and the maximum speed measured in kilometers per hour.
- These two attributes are therefore almost linearly dependent, up to only small differences introduced by rounding off to the nearest mph or kph
- Thus the data really lies approximately on an n-1 dimensional subspace.
- How can we automatically detect, and perhaps remove, this redundancy?

Data Preprocessing: Why?

- It is important to preprocess the data to normalize its mean and variance
- Standardizing the features to have mean zero with a standard deviation of one is important when we compare measurements that have different units.
- Variables that are measured at different scales do not contribute equally to the analysis and might end up creating a bias.

Data Preprocessing: How

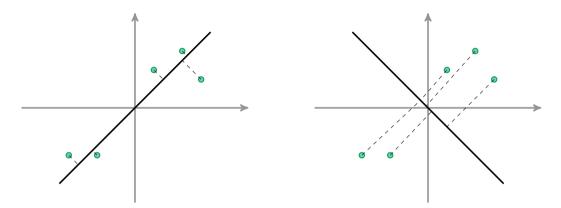
Let $(z^{(1)},\ldots,z^{(m)})$ be the original raw data, then preprocessing goes as follows:

- 1. Let $\mu = \frac{1}{m} \sum_{i=1}^{m} z^{(i)}$
- 2. Define $\tilde{x}^{(i)} = z^{(i)} \mu$
- 3. Let $\sigma_i^2 = \frac{1}{m} \sum_{i=1}^m (\tilde{x}_i^{(i)})^2$
- 4. Define $x^{(i)} = (\tilde{x}_1^{(i)}/\sigma_1, \dots, \tilde{x}_n^{(i)}/\sigma_n)$
- Steps 1-2 zero out the mean of the data
- Steps 3-4 rescale each coordinate to have unit variance, which ensures that different attributes are all treated on the same "scale."

How do we compute the "major axis of variation"?

- We want to compute the direction on which the data approximately lies.
- One way to pose this problem is as finding the unit vector u so that when the data is
 projected onto the direction corresponding to u, the variance of the projected data is
 maximized
- In other words, we would like to choose a direction u so that if we were to approximate the data as lying in the direction/subspace corresponding to u, as much as possible of this variance is still retained.

Toy Example



- projected data still has a fairly large variance, and points are far from origin
- \bullet Want to o automatically select the direction u corresponding to the left graphic

projections have a significantly smaller

variance, and are closer to the origin

PCA Warm up: Projecting onto first principle component

- Recall: the length of the projection of x onto u is given by $x^{T}u$
- ullet To maximize the variance of the projections, we choose a unit-length u to maximize

$$\frac{1}{m} \sum_{i=1}^{m} ((x^{(i)})^{\top} u)^{2} = \frac{1}{m} \sum_{i=1}^{m} u^{\top} x^{(i)} (x^{(i)})^{\top} u = u^{\top} \underbrace{\left(\sum_{i=1}^{m} x^{(i)} (x^{(i)})^{\top}\right)}_{=: \Sigma = X^{\top} X} u$$

• Note that $\Sigma = X^{\top}X$ where

$$X = \begin{bmatrix} - & (x^{(1)})^\top & - \\ & \cdots & \\ - & (x^{(m)})^\top & - \end{bmatrix}$$

• Caution!: the $x^{(i)}$ here are the pre-processed features—i.e., they are the centered and scaled (normalized) features

PCA Warm up: Projecting onto first principle component

• How? This is actually an optimization problem given by

$$\max_{u} \|Xu\|^2 \text{ subject to } \|u\|^2 - 1 = 0 \quad \text{(note that } \|Xu\|^2 = u^\top \Sigma u \text{)}$$

• To solve, we write out the "Lagrangian" (more to come in Module 4)

$$\mathcal{L}(u,\lambda) = \|Xu\|^2 - \lambda(\|u\|^2 - 1) = u^{\mathsf{T}} \Sigma u - \lambda(u^{\mathsf{T}} u - 1)$$
$$\nabla_u \mathcal{L} = 2\Sigma u - 2\lambda u = 0 \implies \Sigma u = \lambda u$$

- Hence, we choose an eigenvector u of Σ that chooses the largest eigenvalue
- u is called the principal eigenvector
- Summary: we have found that if we wish to find a 1-dimensional subspace with which to approximate the data, we should choose u to be the principal eigenvector of Σ

What about projecting on to k = 2 components?

- To get a second dimension, we want to find a new vector v on which the data has maximal variance, but to avoid redundancy, we want $v^{\top}u=0$
- Optimization problem:

$$\max_{v} \|Xv\|^2 \text{ subject to } \|v\|^2 - 1 = 0, \text{ and } u^\top v = 0$$

• Optimality for the Lagrangian $\mathcal{L}(v, \lambda_1, \lambda_2) = ||Xv||^2 - \lambda_1(||v||^2 - 1) - \lambda_2 u^\top v$:

$$\nabla_{v}\mathcal{L} = 2\underbrace{X^{\top}X}_{=\Sigma}v - 2\lambda_{1}v - \lambda_{2}u = 0 \implies 2\underbrace{u^{\top}\Sigma v}_{=\lambda u^{\top}v} - 2\lambda_{1}\underbrace{u^{\top}v}_{=0} - \lambda_{2}\underbrace{u^{\top}u}_{=1} = -\lambda_{2}\cdot 1 = 0$$

$$\implies \lambda_2 = 0 \implies \Sigma v = \lambda_1 v \implies (\lambda_1, v)$$
 second largest eigenpair

PCA More Generally

- Suppose we wish to project our data on to a k-dimensional subspace (k < n)
- We should choose u_1, \ldots, u_k to be the top k eigenvectors of Σ .
- The u_i 's form a new, orthogonal basis for the data
- Indeed, recall that Σ is symmetric so we can always choose the u_i 's to be orthogonal to one another
- Next, we represent each $x^{(i)}$ in the new basis

$$y^{(i)} = (u_1^{\top} x^{(i)}, u_2^{\top} x^{(i)}, \dots, u_k^{\top} x^{(i)}) \in \mathbb{R}^k$$

- ullet $x^{(i)}$ are n-dimensional and $y^{(i)}$ are k-dimensional
- PCA is therefore also referred to as a dimensionality reduction algorithm.
- Vectors u_1, \ldots, u_k are called the first k principal components

Summary: PCA Algorithm

- Pre-process the raw data $(z^{(1)}, \ldots, z^{(m)})$
 - 1. Recenter the data: define $\tilde{x}^{(i)} = z^{(i)} \mu$ where $\mu = \frac{1}{m} \sum_{i=1}^{m} z^{(i)}$
 - 2. Rescale/normalize: define $x^{(i)}$ with entries $x_j^{(i)} = \tilde{x}_j^{(i)}/\sigma_j$ where $\sigma_j^2 = \frac{1}{m}\sum_{i=1}^m (\tilde{x}_j^{(i)})^2$
- Run PCA
 - 1. Compute the covariance matrix $\Sigma = \frac{1}{m} \sum_{i=1}^m x^{(i)} (x^{(i)})^\top = \frac{1}{m} X^\top X$
 - 2. Compute the eigenvalues and (orthonormal) eigenvectors of Σ
 - 3. Retain k eigenvectors with largest eigenvalues V_k
 - 4. Project X onto the principal component space

Alternative Derivation via Reconstruction Error

- Rather than maximizing variance, we may want to minimize reconstruction error
- ullet 1-dimensional case: we are looking for a single projection direction u
- ullet projected data: y=Xu where each y_i is the position of the i-th feature vector along u
- To project back into the original space we do $yu^{\top} = Xuu^{\top}$ —i.e., yu^{\top} is the reconstructed value
- Reconstruction Error:

$$\|X - yu^{\top}\|^2 = \|X - Xuu^{\top}\|^2 = \|X\|^2 + \underbrace{\|Xuu^{\top}\|^2}_{=\|X\|^2} - 2\operatorname{Tr}(X^{\top}Xuu^{\top})$$

$$\implies \|X - yu^{\top}\|^2 = 2 \underbrace{\|X\|^2}_{\text{constant}} - 2u^{\top}X^{\top}Xu$$

• This is equivalent to minimizing $||Xu||^2$

Connections with SVD

- Facts: for a symmetric matrix $\Sigma = \Sigma^{\top}$,
 - the singular values are the absolute values of the eigenvalues and $\Sigma = U\Lambda V^{\top}$ where U=V
 - ▶ if $\Sigma > 0$, then $\lambda_i > 0$
 - ▶ if $\Sigma \succ 0$, then $\lambda_i > 0$ and U, V, Λ are all square non-singular matrices matrices
- Indeed, $\Sigma^{\top}\Sigma = \Sigma^2$ so that $\sigma_i(\Sigma) = \sqrt{\lambda_i(\Sigma^2)} = \lambda_i(\Sigma)$

Use the SVD to scale up!

- Often we have very large data sets—i.e., Σ might be very big in terms of dimension
- ullet Problems: Computing eigenvectors is slow, and computing Σ could have numerical precision issues
- As an alternative we can use SVD since PCA reduces to SVD

Reducing PCA to SVD

- $\Sigma = X^{\top}X \in \mathbb{R}^{n \times n}$ is symmetric PSD $\implies \Sigma = Q\Lambda Q^{\top}$ where $QQ^{\top} = I$
- Consider the SVD of $X = USV^{\top}$.

$$\Sigma = \boldsymbol{X}^{\top} \boldsymbol{X} = (\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\top})^{\top} (\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\top}) = \boldsymbol{V} \boldsymbol{S}^{\top} \underbrace{\boldsymbol{U}^{\top} \boldsymbol{U}}_{=\boldsymbol{I}} \boldsymbol{S} \boldsymbol{V}^{\top} = \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\top}, \ \boldsymbol{V} \equiv \boldsymbol{Q}$$

- Hence, the rows of $V^{\top} = Q^{\top}$ are the eigenvectors of $\Sigma = X^{\top}X$
 - \blacktriangleright The right singular vectors of X are the same as the eigenvectors of $X^{\top}X$
 - ightharpoonup The eigenvalues of $X^{T}X$ are the squares of the singular values of X
- Thus PCA reduces to computing the SVD of X (without having to form $X^{\top}X!$).
- Output of PCA is the top k eigenvectors of $X^\top X \iff \mathtt{SVD}$ of $X = USV^\top$ gives top k eigenvectors of $X^\top X$ via first k rows of V^\top

PCA based Low-Rank Approximations

- The techniques developed for PCA can also be used to produce low-rank matrix approximations.
- We seek matrices Y, Z^{\top} such that $X = YZ^{\top}$
- 1. Preprocess the data $(z^{(1)}, \ldots, z^{(m)})$ as before: so that the rows sum to the all-zero vector and, normalize each column
- 2. Form the covariance matrix $X^{\top}X$
- 3. Take the k rows of Z^{\top} to be the top k principal components of X—the k eigenvectors u_1, \ldots, u_k of $X^{\top}X$ with largest eigenvalues
- 4. For $i=1,\ldots,m$, the *i*-th row of Y is defined as the projections $(\langle x^{(i)},u_1\rangle,\ldots,\langle x^{(i)},u_k\rangle).$

Example: Eigenfaces

Mod3-N3.ipynb