3
 EE445 Mod3-Lec²: Principal Component Analysis \& Regression

References:

- [CE-OptMod]: Chapter: 5.3.2
- Additional reference: Chapter 15 of "A Course in ML" by Hal Daumé (http://cim1. info/dd/vo_99/ciml-vo_99-all.pdf)

Outline

1. Principal Component Analysis
z. Prineipal Component Regression

What is PCA?

- Principal component analysis (PCA) is a technique of unsupervised learning widely used to "discover" the most important, or informative, directions in a data set.
- Aside unsupervised learning: i.e., learning from data without labels or observations-essentially with only features x and no observations y
- There are many reasons you may want to perform PCA on a data set
- to visualize the data in a lower-dimensional space,
- to understand the sources of variability in the data,
- to understand correlations between different coordinates of the data points, etc.

What is PCA?

- the majority of the variation of the data is contained in the direction at about 45 degrees from the x-axis
- In contrast, the direction at about 135 degrees contains very little variation.

What is PCA? Example

- Suppose we are given dataset $\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ of attributes of m different types of vehicles, such as their maximum speed, turn radius, and so on.
- Let $x^{(i)} \in \mathbb{R}^{n}$ with $n \ll m$
- Unknown to us, two different attributes-some x_{i} and x_{j}-respectively give a car's

1. maximum speed measured in miles per hour,
2. and the maximum speed measured in kilometers per hour.

- These two attributes are therefore almost linearly dependent, up to only small differences introduced by rounding off to the nearest mph or kph
- Thus the data really lies approximately on an $n-1$ dimensional subspace.
- How can we automatically detect, and perhaps remove, this redundancy?

Data Preprocessing: Why?
 scikit-learn

- It is important to preprocess the data to normalize its mean and variance
- Standardizing the features to have mean zero with a standard deviation of one is important when we compare measurements that have different units.
- Variables that are measured at different scales do not contribute equally to the analysis and might end up creating a bias.

Data Preprocessing: How

Let $\left(z^{(1)}, \ldots, z^{(m)}\right)$ be the original raw data, then preprocessing goes as follows:
Step 1: compute the mean

$$
\mu=\frac{1}{m} \sum_{i=1}^{m} z^{(i)} \in 12^{n}
$$

Step 2: recenter the data

$$
\int \text { zeroing out mean }
$$

$$
\tilde{x}^{(i)}=z^{(i)}-\mu
$$

Step 4: normalize (scale) the data

$$
x^{(i)}=\left(\tilde{x}_{1}^{(i)} / \sigma_{1}, \cdots, \frac{\tilde{x}_{n}^{(i)}}{\sigma_{n}}\right)
$$

How do we compute the "major axis of variation"?

- We want to compute the direction on which the data approximately lies.
- One way to pose this problem is as finding the unit vector u so that when the data is projected onto the direction corresponding to u, the variance of the projected data is maximized
- In other words, we would like to choose a direction u so that if we were to approximate the data as lying in the direction/subspace corresponding to u, as much as possible of this variance is still retained.

Toy Example

- projected data still has a fairly large variance, and points are far from origin

- projections have a significantly smaller variance, and are closer to the origin

PCA Warm up: Projecting onto first principle component

- Recall: the length of the projection of x onto u is given by $\underbrace{x^{\top} u}$
- To maximize the variance of the projections, we choose a unit-length u to maximize

$$
\begin{aligned}
& \frac{1}{m} \sum_{i=1}^{m}(\underbrace{\left.\left(x^{(i)}\right)^{\top} u\right)^{2}=\frac{1}{m} \sum_{i=1}^{m} u^{\top} x^{(i)}\left(x^{(i)}\right)^{\top} u=\frac{1}{m} u^{\top}(\underbrace{\left.\sum_{i=1}^{m} x^{(i)}\left(x^{(i)}\right)^{\top}\right) u}_{\approx: \Sigma=X^{\top} X}} \begin{array}{rl}
\max \{\underbrace{u^{\top} x^{\top} x u} \mid & \left.\|u\|^{2}=1\right\} \\
x=\left[\begin{array}{c}
-\left(x^{(i)}\right)^{\top}- \\
\vdots \\
-\left(x^{(m)}\right)^{2}
\end{array}\right]
\end{array}
\end{aligned}
$$

- Caution!: the $x^{(i)}$ here are the pre-processed features-i.e., they are the centered and scaled (normalized) features

PCA Warm up: Projecting onto first principle component

$$
u^{\top} x^{\top} x_{u}
$$

- How? This is actually an optimization problem given by

$$
\max _{u}\|X u\|^{2} \text { sot. } \underbrace{q}_{q u \|^{2}-1}=0
$$

$$
A^{\top} A, A A^{\top}
$$

$$
\Sigma=x^{\top} X^{\psi}
$$

- To solve, we write out the "Lagrange ma margin"

$$
\begin{aligned}
& \mathcal{L}(u, \lambda)=\left\|X_{u}\right\|^{2}-\lambda\left(\|u\|^{2}-1\right)=u^{\top} \sum u-\lambda\left(u^{\top} u-1\right) \\
& \nabla_{u} \mathcal{L}(u, \lambda)=2 \sum u-2 \lambda u=0 \Rightarrow \sum_{u}=\lambda u
\end{aligned}
$$

- Summary: we have found that if we wish to find a 1-dimensional subspace with which to approximate the data, we should choose u to be the principal eigenvector of Σ

What about projecting on to $k=2$ components?

- To get a second dimension, we want to find a new vector v on which the data has maximal variance, but to avoid redundancy, we want $v^{\top} u=0$
- Optimization problem:

$$
\max _{v}\|X v\|^{2} \text { sit. }\|v\|^{2}-1=0 \text { \& } \underbrace{u^{\top} v=0} \quad u^{\top} \Sigma=\lambda u^{2}
$$

- Optimality for the Lagrangian

$$
\begin{aligned}
& \alpha\left(v, \lambda_{1}, \lambda_{2}\right)=\|x v\|^{2}-\lambda_{1}\left(\|v\|^{2}-1\right)-\lambda_{2} u^{\top} v
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(\lambda_{1}, v\right) \text { where } \lambda_{1} \text { is second lorpesh }
\end{aligned}
$$

PCA More Generally

$$
x^{(i)} \in \mathbb{R}^{n}
$$

- Suppose we wish to project our data on to a k-dimensional subspace $(k<n)$
- We should choose u_{1}, \ldots, u_{k} to be the top k eigenvectors of Σ.
- The u_{i} 's form a new, orthogonal basis for the data
- Indeed, recall that Σ is symmetric so we can always choose the u_{i} 's to be orthogonal to one another
- Next, we represent each $x^{(i)}$ in the new basis

$$
y^{(i)}=\left(u^{u_{1}^{\top} x^{(i)}}, u_{2}^{\top} x^{(i)}, \ldots, u_{k}^{\top} x^{(i)}\right) \in \mathbb{R}^{k}
$$

- $x^{(i)}$ are n-dimensional and $y^{(i)}$ are k-dimensional
\longleftarrow PCA is therefore also referred to as a dimensionality reduction algorithm.
- Vectors u_{1}, \ldots, u_{k} are called the first k principal components

Summary: PCA Algorithm

$\{$
Pre-process the raw data $\left(z^{(1)}, \ldots, z^{(m)}\right)$

1. Recenter the data: define $\tilde{x}^{(i)}=z^{(i)}-\mu$ where $\mu=\frac{1}{m} \sum_{i=1}^{m} z^{(i)}$
2. Rescale/normalize: define $x^{(i)}$ with entries $x_{j}^{(i)}=\tilde{x}_{j}^{(i)} / \sigma_{j}$ where $\sigma_{j}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(\tilde{x}_{j}^{(i)}\right)^{2}$

- Run PCA

1. Compute the covariance matrix $\Sigma=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}\left(x^{(i)}\right)^{\top}=\frac{1}{m} X^{\top} X$
2. Compute the eigenvalues and (orthonormal) eigenvectors of Σ
3. Retain k eigenvectors with largest eigenvalues V_{k}
4. Project X onto the principal component space

Alternative Derivation via Reconstruction Error

$$
\Rightarrow\|x u\|^{2}
$$

- Rather than maximizing variance, we may want to minimize reconstruction error
- 1-dimensional case: we are looking for a single projection direction u
- projected data: $y=X u$ where each y_{i} is the position of the i-th feature vector along u
- To project back into the original space we do $y u^{\top}=X u u^{\top}$-ie., $y u^{\top}$ is the reconstructed value
- Reconstruction Error:

$$
\begin{aligned}
& \left\|x-y u^{\top}\right\|^{2}=\left\|x-X u u^{\top}\right\|^{2}=\|X\|^{2}+\| \underbrace{X u u^{\top} \|^{2}}_{=\|x\|^{2}}-2 \operatorname{Tr}\left(X^{\top} X u u^{\top}\right) \\
& \Rightarrow\left\|x-y u^{i}\right\|^{2}=\underbrace{2\|X\|^{2}}_{\text {constant }}-\underbrace{2 u^{\top} x^{\top} X u}
\end{aligned}
$$

Connections with SVD

$$
\Sigma=U \Delta U^{\top}
$$

- Facts: for a symmetric matrix $\Sigma=\Sigma^{\top}$,
- the singular values are the absolute values of the eigenvalues and $\Sigma=U \Lambda V^{\top}$ where $U=V$
\int if $\Sigma \geq 0$, then $\lambda_{i} \geq 0$
(- if $\Sigma \succ 0$, then $\lambda_{i}>^{\prime} 0$ and U, V, Λ are all square non-singular matrices matrices
- Indeed, $\Sigma^{\top} \Sigma=\Sigma^{2}$ so that $\sigma_{i}(\Sigma)=\sqrt{\lambda_{i}\left(\Sigma^{2}\right)}=\lambda_{i}(\Sigma)$

Use the SVD to scale up!

- Often we have very large data sets-i.e., Σ might be very big in terms of dimension
- Problems: Computing eigenvectors is slow, and computing Σ could have numerical precision issues
- As an alternative we can use SVD since PCA reduces to SVD

AaA \quad Reducing PCA to $\operatorname{SVD} \quad A=\sum_{\zeta} V^{\top}$

- $\Sigma=X^{\top} X \in \mathbb{R}^{n \times n}$ is symmetric PSD $\Longrightarrow \Sigma=Q \Lambda Q^{\top}$ where $Q Q^{\top}=I$
- Consider the SVD of $X=U S V^{\top}$.

$$
\Sigma=X^{\top} X=\left(U S V^{\top}\right)^{\top}(U S V)=V S_{\frac{\pi}{I}}^{U^{\top} U S V^{\top}=V \Lambda V^{\top}, V \equiv Q . \quad V .}
$$

\downarrow

- Hence, the rows of $V^{\top}=Q^{\top}$ are the eigenvectors of $\Sigma=X^{\top} X$

3 The right singular vectors of X are the same as the eigenvectors of $X^{\top} X$
The eigenvalues of $X^{\top} X$ are the squares of the singular values of X

- Thus PCA reduces to computing the SVD of X (without having to form $X^{\top} X!$).
- Output of PCA is the top k eigenvectors of $X^{\top} X \Longleftrightarrow$ SVD of $X=U S V^{\top}$ gives top k eigenvectors of $X^{\top} X$ via first k rows of V^{\top}

PCA based Low-Rank Approximations

- The techniques developed for PCA can also be used to produce low-rank matrix approximations.
- We seek matrices Y, Z^{\top} such that $X=Y Z^{\top}$

$$
X \underset{\sim}{\approx} X_{k}=\underbrace{}_{i} \cdot z_{u}^{\bar{u}}
$$

$$
x=X_{r}
$$

Steps for Low-Rank approximatuon

1. preprouss $z^{(i)} \rightarrow x^{(i)}$
2. covarianc matriy $X^{\top} X$
low runt representartion if rl($(X)=r$, talu r nowzes eigeropluas of $X^{\top} X$; correspand eigenvechol
3. Tatk k-row of Z^{7} to Be top pricpal corponets of X -is u_{1}, \ldots, u_{k} eigervertors of $X^{\top} X$ corresper ti k largest eigurls 4.

$$
\left(\left\langle x^{(i)}, u_{1}\right\rangle, \ldots,\left\langle x^{(i)}, u_{u}\right\rangle\right)=y^{(i)} \text { foris colsof } Y^{\ll}
$$

Example: Eigenfaces

Mod3-N3.ipynb

