EE445 Mod3-Lec2: Principal Component Analysis &
Regression

References:
¢ [CE-OptMod]: Chapter: 5.3.2
e Additional reference: Chapter 15 of "A Course in ML" by Hal Daumé

(http ://ciml.info/d1/v0_99/ciml-v0_99-all .pdf)
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1. Principal Component Analysis

2. Principal Component Regression
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What is PCA?

® Principal component analysis (PCA) is a technique of unsupervised learning widely
used to “discover’ the most important, or informative, directions in a data set.

¢ Aside unsupervised learning: i.e., learning from data without labels or
observations—essentially with only features  and no observations y

® There are many reasons you may want to perform PCA on a data set

P to visualize the data in a lower-dimensional space,
» to understand the sources of variability in the data,
> to understand correlations between different coordinates of the data points, etc.
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What is PCA?

10 -
. - . . . . .
s %_’o"‘ ® the majority of the variation of the data is
“,f-v contained in the direction at about 45

8 Py degrees from the z-axis
7 =

".'b.‘" ® |n contrast, the direction at about 135
6 K . . L

‘:_.\\ degrees contains very little variation.

50L%

0.0 0.2 0.4 0.6 0.8 1.0

gO to: https://setosa.io/ev/principal-component-analysis/
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What is PCA? Example

* Suppose we are given dataset {z(1),... 2™} of attributes of m different types of
vehicles, such as their maximum speed, turn radius, and so on.

o Let () € R™ with n < m
® Unknown to us, two different attributes—some x; and x;—respectively give a car’s

1. maximum speed measured in miles per hour,
2. and the maximum speed measured in kilometers per hour.

® These two attributes are therefore almost linearly dependent, up to only small
differences introduced by rounding off to the nearest mph or kph

® Thus the data really lies approximately on an n — 1 dimensional subspace.

® How can we automatically detect, and perhaps remove, this redundancy?
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Data Preprocessing: Why?

e [t is important to preprocess the data to normalize its mean and variance

e Standardizing the features to have mean zero with a standard deviation of one is
important when we compare measurements that have different units.

® Variables that are measured at different scales do not contribute equally to the analysis
and might end up creating a bias.
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Data Preprocessing: How

Let (z(l), . ,z(m)) be the original raw data, then preprocessing goes as follows:

Step 1: compute the mean
Step 2: recenter the data
Step 3: compute the standard deviation

Step 4: normalize (scale) the data
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How do we compute the “major axis of variation"?

® \We want to compute the direction on which the data approximately lies.

® One way to pose this problem is as finding the unit vector u so that when the data is
projected onto the direction corresponding to u, the variance of the projected data is
maximized

e |n other words, we would like to choose a direction u so that if we were to approximate
the data as lying in the direction/subspace corresponding to u, as much as possible of
this variance is still retained.
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Toy Example

A A
Q )
7
Q AN Y
N ® 7 2
’ //
> - 4 // // >
// /7 //
7 7/
A
Ve 7/
7/ 7
S
a /o e @
® projected data still has a fairly large variance, ® projections have a significantly smaller
and points are far from origin variance, and are closer to the origin
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PCA Warm up: Projecting onto first principle component

® Recall: the length of the projection of z onto w is given by =" u

® To maximize the variance of the projections, we choose a unit-length u to maximize

e Caution!: the (") here are the pre-processed features—i.e., they are the centered and

scaled (normalized) features
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PCA Warm up: Projecting onto first principle component

e How? This is actually an optimization problem given by

® To solve, we write out the “Lagrangian"

e Summary: we have found that if we wish to find a 1-dimensional subspace with which
to approximate the data, we should choose u to be the principal eigenvector of ¥
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What about projecting on to kK = 2 components?

® To get a second dimension, we want to find a new vector v on which the data has
maximal variance, but to avoid redundancy, we want v u =0

e Optimization problem:

e Optimality for the Lagrangian
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PCA More Generally

® Suppose we wish to project our data on to a k-dimensional subspace (k < n)
e \We should choose u, ..., u; to be the top k eigenvectors of X.
® The u;'s form a new, orthogonal basis for the data

® Indeed, recall that ¥ is symmetric so we can always choose the u;'s to be orthogonal to
one another

e Next, we represent each 2(® in the new basis
y @ = (u] 2@ uf 2@ uf 2D) e RF

e () are n—dimensional and 4 are k—dimensional
® PCA is therefore also referred to as a dimensionality reduction algorithm.

e \ectors uy,...,u; are called the first k& principal components
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Summary: PCA Algorithm

® Pre-process the raw data (z(1), ..., 2("™)
1. Recenter the data: define 2 = 2(9) — 1 where yy = L3~ 2(0
2. Rescale/normalize: define () with entries xy) = ~y)/aj where 07 = L 3"

® Run PCA
1. Compute the covariance matrix £ = L 3" 20 (20T = LXTX
2. Compute the eigenvalues and (orthonormal) eigenvectors of %
3. Retain k eigenvectors with largest eigenvalues Vj,
4. Project X onto the principal component space
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Alternative Derivation via Reconstruction Error

Rather than maximizing variance, we may want to minimize reconstruction error

1-dimensional case: we are looking for a single projection direction u

projected data: y = Xwu where each y; is the position of the i-th feature vector along u

To project back into the original space we do yu' = Xuu'—i.e., yu' is the
reconstructed value

Reconstruction Error:
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Connections with SVD

e Facts: for a symmetric matrix ¥ = 37,

> the singular values are the absolute values of the eigenvalues and ¥ = UAV T where
U=V

> if X >0, then \; >0

> if ¥ =0, then \; > 0 and U, V, A are all square non-singular matrices matrices

® Indeed, X% = %2 so that 0;(2) = VM (22) = Mi(D)
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Use the SVD to scale up!

e Often we have very large data sets—i.e., ¥ might be very big in terms of dimension

® Problems: Computing eigenvectors is slow, and computing ¥ could have numerical
precision issues

® As an alternative we can use SVD since PCA reduces to SVD
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Reducing PCA to SVD

Y =X"X € R™ is symmetric PSD — X = QAQT where QQT =1
® Consider the SVD of X = USV'T.

Hence, the rows of V' = QT are the eigenvectors of ¥ = X T X

» The right singular vectors of X are the same as the eigenvectors of X T X
> The eigenvalues of X T X are the squares of the singular values of X

Thus PCA reduces to computing the SVD of X (without having to form X T X1).

Output of PCA is the top k eigenvectors of X ' X <= SVD of X = USV " gives top k
eigenvectors of X T X via first k rows of VT
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PCA based Low-Rank Approximations

® The techniques developed for PCA can also be used to produce low-rank matrix
approximations.

e \We seek matrices Y, Z" such that X =Y Z T
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Example: Eigenfaces

Mod3-N3.ipynb
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