
EE445 Mod3-Lec2: Principal Component Analysis &
Regression

References:
• [CE-OptMod]: Chapter: 5.3.2
• Additional reference: Chapter 15 of "A Course in ML" by Hal Daumé

(http://ciml.info/dl/v0_99/ciml-v0_99-all.pdf)

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 1

http://ciml.info/dl/v0_99/ciml-v0_99-all.pdf


Outline

1. Principal Component Analysis
2. Principal Component Regression

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 2



What is PCA?

• Principal component analysis (PCA) is a technique of unsupervised learning widely
used to “discover” the most important, or informative, directions in a data set.

• Aside unsupervised learning: i.e., learning from data without labels or
observations—essentially with only features x and no observations y

• There are many reasons you may want to perform PCA on a data set
▶ to visualize the data in a lower-dimensional space,
▶ to understand the sources of variability in the data,
▶ to understand correlations between different coordinates of the data points, etc.

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 3



What is PCA?

• the majority of the variation of the data is
contained in the direction at about 45
degrees from the x-axis

• In contrast, the direction at about 135
degrees contains very little variation.

go to: https://setosa.io/ev/principal-component-analysis/

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 4

https://setosa.io/ev/principal-component-analysis/


What is PCA? Example

• Suppose we are given dataset {x(1), . . . , x(m)} of attributes of m different types of
vehicles, such as their maximum speed, turn radius, and so on.

• Let x(i) ∈ Rn with n ≪ m

• Unknown to us, two different attributes—some xi and xj—respectively give a car’s
1. maximum speed measured in miles per hour,
2. and the maximum speed measured in kilometers per hour.

• These two attributes are therefore almost linearly dependent, up to only small
differences introduced by rounding off to the nearest mph or kph

• Thus the data really lies approximately on an n− 1 dimensional subspace.
• How can we automatically detect, and perhaps remove, this redundancy?

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 5



Data Preprocessing: Why?

• It is important to preprocess the data to normalize its mean and variance
• Standardizing the features to have mean zero with a standard deviation of one is

important when we compare measurements that have different units.
• Variables that are measured at different scales do not contribute equally to the analysis

and might end up creating a bias.

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 6



Data Preprocessing: How

Let (z(1), . . . , z(m)) be the original raw data, then preprocessing goes as follows:
Step 1: compute the mean

Step 2: recenter the data

Step 3: compute the standard deviation

Step 4: normalize (scale) the data

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 7



How do we compute the “major axis of variation"?

• We want to compute the direction on which the data approximately lies.
• One way to pose this problem is as finding the unit vector u so that when the data is

projected onto the direction corresponding to u, the variance of the projected data is
maximized

• In other words, we would like to choose a direction u so that if we were to approximate
the data as lying in the direction/subspace corresponding to u, as much as possible of
this variance is still retained.

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 8



Toy Example

• projected data still has a fairly large variance,
and points are far from origin

• projections have a significantly smaller
variance, and are closer to the origin

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 9



PCA Warm up: Projecting onto first principle component

• Recall: the length of the projection of x onto u is given by x⊤u

• To maximize the variance of the projections, we choose a unit-length u to maximize

• Caution!: the x(i) here are the pre-processed features—i.e., they are the centered and
scaled (normalized) features

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 10



PCA Warm up: Projecting onto first principle component

• How? This is actually an optimization problem given by

• To solve, we write out the “Lagrangian"

• Summary: we have found that if we wish to find a 1-dimensional subspace with which
to approximate the data, we should choose u to be the principal eigenvector of Σ

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 11



What about projecting on to k = 2 components?

• To get a second dimension, we want to find a new vector v on which the data has
maximal variance, but to avoid redundancy, we want v⊤u = 0

• Optimization problem:

• Optimality for the Lagrangian

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 12



PCA More Generally

• Suppose we wish to project our data on to a k-dimensional subspace (k < n)
• We should choose u1, . . . , uk to be the top k eigenvectors of Σ.
• The ui’s form a new, orthogonal basis for the data
• Indeed, recall that Σ is symmetric so we can always choose the ui’s to be orthogonal to

one another
• Next, we represent each x(i) in the new basis

y(i) = (u⊤1 x
(i), u⊤2 x

(i), . . . , u⊤k x
(i)) ∈ Rk

• x(i) are n–dimensional and y(i) are k–dimensional
• PCA is therefore also referred to as a dimensionality reduction algorithm.
• Vectors u1, . . . , uk are called the first k principal components

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 13



Summary: PCA Algorithm

• Pre-process the raw data (z(1), . . . , z(m))

1. Recenter the data: define x̃(i) = z(i) − µ where µ = 1
m

∑m
i=1 z

(i)

2. Rescale/normalize: define x(i) with entries x
(i)
j = x̃

(i)
j /σj where σ2

j = 1
m

∑m
i=1(x̃

(i)
j )2

• Run PCA
1. Compute the covariance matrix Σ = 1

m

∑m
i=1 x

(i)(x(i))⊤ = 1
mX⊤X

2. Compute the eigenvalues and (orthonormal) eigenvectors of Σ
3. Retain k eigenvectors with largest eigenvalues Vk

4. Project X onto the principal component space

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 14



Alternative Derivation via Reconstruction Error
• Rather than maximizing variance, we may want to minimize reconstruction error
• 1–dimensional case: we are looking for a single projection direction u

• projected data: y = Xu where each yi is the position of the i-th feature vector along u

• To project back into the original space we do yu⊤ = Xuu⊤—i.e., yu⊤ is the
reconstructed value

• Reconstruction Error:

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 15



Connections with SVD

• Facts: for a symmetric matrix Σ = Σ⊤,
▶ the singular values are the absolute values of the eigenvalues and Σ = UΛV ⊤ where

U = V
▶ if Σ ≥ 0, then λi ≥ 0
▶ if Σ ≻ 0, then λi > 0 and U, V,Λ are all square non-singular matrices matrices

• Indeed, Σ⊤Σ = Σ2 so that σi(Σ) =
√
λi(Σ2) = λi(Σ)

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 16



Use the SVD to scale up!

• Often we have very large data sets—i.e., Σ might be very big in terms of dimension
• Problems: Computing eigenvectors is slow, and computing Σ could have numerical

precision issues
• As an alternative we can use SVD since PCA reduces to SVD

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 17



Reducing PCA to SVD

• Σ = X⊤X ∈ Rn×n is symmetric PSD =⇒ Σ = QΛQ⊤ where QQ⊤ = I

• Consider the SVD of X = USV ⊤.

• Hence, the rows of V ⊤ = Q⊤ are the eigenvectors of Σ = X⊤X
▶ The right singular vectors of X are the same as the eigenvectors of X⊤X
▶ The eigenvalues of X⊤X are the squares of the singular values of X

• Thus PCA reduces to computing the SVD of X (without having to form X⊤X!).
• Output of PCA is the top k eigenvectors of X⊤X ⇐⇒ SVD of X = USV ⊤ gives top k

eigenvectors of X⊤X via first k rows of V ⊤

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 18



PCA based Low-Rank Approximations
• The techniques developed for PCA can also be used to produce low-rank matrix

approximations.
• We seek matrices Y,Z⊤ such that X = Y Z⊤

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 19



Example: Eigenfaces

Mod3-N3.ipynb

[Lecturer: L.J. Ratliff] [EE445 Mod3-L3] 20


