
EE445 Mod3-Lec2: SVD & Low Rank Approximation
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Outline

1. M3-L1: Review Eigenvalues & Eigenvectors
2. M3-L1: Symmetric Matrices
3. M3-L2 (this lecture): Singular value decomposition SVD & low rank approximation
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Overview

• We just talked about special classes of matrices that have a nice decomposition in
terms of their eigenvalues—namely, symmetric PSD matrices.

• Now, we will talk about a matrix decomposition that every matrix has—i.e., SVD
• And, it is fundamentally related to a key ML analysis tool: PCA
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Matrix Decomposition

• Matrix decomposition, also known as matrix factorization, involves describing a given
matrix using its constituent elements.

• Recall that you saw QR decomposition in Module 1 and then its use in Module 2
(e.g., solving least squares, in particular sparse problems)

• Perhaps the most known and widely used matrix decomposition method is the
Singular-Value Decomposition, or SVD.

• All matrices have an SVD, which makes it more stable than other methods, such as the
eigen-decomposition.

• We will see the SVD is useful for computing the pseudoinverse efficiently and for
dimensionality reduction
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Singular Value Decomposition
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What is SVD?

• One can generalize eigenvalues/vectors to non-square matrices, in which case they are
called singular vectors and singular values.

• The SVD is a unique matrix decomposition that exists for every matrix A ∈ Rm×n:

A = UΣV ⊤

where U ∈ Rm×m and V ∈ Rn×n are unitary matrices, and Σ ∈ Rm×n is a matrix with
non-negative entries on the diagonal and zeros on the off diagonal.

• Unitary: UU⊤ = I and V V ⊤ = I
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SVD as a Dyadic Exanpsion

An equivalent way to express the SVD A = UΣV ⊤ is as a dydic expansion:

A =

min{m,n}∑
i=1

σi · uiv⊤i

(i.e., weighted sum of dyads)
• That is, the SVD expresses A as a nonnegative linear combination of min{m,n} rank-1

matrices
• the singular values provide the multipliers
• the outer products of the left and right singular vectors provide the rank-1 matrices.
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SVD

• The diagonal entries of Σ are called the singular values of A
• The column vectors of V are called the right singular vectors of A
• The column vectors of U are called the left singular vectors of A.
• The number of nonzero singular values is equal to the rank of the matrix A.
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Geometric View of SVD
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Unpacking the SVD

• Let A ∈ Rm×n

• Fact 1. Both A⊤A ∈ Rn×n and AA⊤ ∈ Rm×m are symmetric square matrices:

(A⊤A)⊤ = A⊤(A⊤)⊤ = A⊤A and (AA⊤)⊤ = (A⊤)⊤A⊤ = AA⊤

• Fact 2. Both A⊤A and AA⊤ share the same non-zero eigenvalues: let (λ, v) be an
eigenvalue-eigenvector pair for A⊤A so that

A⊤Av = λv =⇒ AA⊤ Av︸︷︷︸
u

= λAv =⇒ (λ, u) is eigenpair of AA⊤
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Unpacking the SVD

• According to the othogonally diagonalizable property of symmetric matrices, the
matrices A⊤A and AA⊤ can be decomposed as following:

A⊤A = V ΛV ⊤ and AA⊤ = UΛU⊤

• Indeed, if A = UΣV ⊤ then

A⊤A = (UΣV ⊤)⊤(UΣV ) = V Σ⊤U⊤UΣV ⊤ = V Σ⊤ΣV ⊤

• Can compute by diagonalizing the PSD symmetric matrices A⊤A and AA⊤
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Using the SVD to Compute Pseudo Inverses

• It turns out that using the SVD we have a very easy way to compute the pseudo-inverse
of A—i.e., A† = (A⊤A)−1A⊤ which we saw in Mod1 & Mod2

• Indeed

A† = (V Σ⊤ΣV ⊤)−1V ΣU⊤ = V (Σ⊤Σ)−1V ⊤V ΣU⊤ = V (Σ⊤Σ)−1ΣU⊤

since Σ is a diagonal matrix, its pseudo-inverse is just a diagonal matrix with the
reciprocals of the nonzero elements on the diagonal.
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Matrix Norms and Connections to Singular values

• Matrix norms and singular values have special relationships.
• Forbenius Norm:

∥A∥F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

= (Tr(A⊤A))1/2

• Matrix p-norm: matrix p-Norm is defined as the largest scalar that you can get for a
unit vector

∥A∥p = sup
x ̸=0

∥Ax∥p
∥x∥p

= max
∥x∥p=1

∥Ax∥p

• Aside: supremum sup(·) is the “ least upper bound" of its argument
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Spectral Radius

• Definition (Spectral Radius): The spectral radius ρ(A) is the maximum modulus of
the eigenvalues of A—i.e., ρ(A) = maxi=1,...,n |λi(A)|.

• It is not an induced norm (since ρ(A) = 0 does not imply A = 0), however we do have
the property that ρ(A) ≤ ∥A∥p for any p.

• Indeed, letting (λi, vi) where vi ̸= 0 be an eigenpair of A, we have

∥A∥p∥vi∥p ≥ ∥Avi∥p = ∥λivi∥p = |λi|∥vi∥p =⇒ |λi| ≤ ∥A∥p ∀i
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Common Matrix Norms

Other norms of interest include the 1-norm and ∞-norms.
• 1-norm (ℓ1): consider x ∈ Rn. The ℓ1-norm is given by ∥x∥1 =

∑n
i=1 |xi|

• ∞-norm (ℓ∞): consider x ∈ Rn. The ℓ∞-norm is given by ∥x∥∞ = maxi=1,...,n |xi|
We can define induced norms from these ℓp norms:

∥A∥1 = max
∥x∥1=1

∥Ax∥1 = max
j=1,...,n

m∑
i=1

|aij | i.e., the max column sum

∥A∥∞ = max
∥x∥∞=1

∥Ax∥∞ = max
i=1,...,m

n∑
j=1

|aij | i.e., the max row sum,
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Matrix Norms: Spectral Norm

• Spectral Norm (Matrix 2-norm): Largest singular value of the matrix σ1(A)

max
∥x∥2=1

∥Ax∥2 = max
∥x∥2=1

(x⊤A⊤Ax)1/2 = max
∥x∥2=1

(x⊤V Σ2 V ⊤x︸︷︷︸
=:y

)1/2

= max
∥y∥2=1

(y⊤Σ2y)1/2 = σ1(A)

where in the last equality we choose x to be the eigenvector of A⊤A corresponding to
the largest eigenvalue.

• Aside: singular values are the square roots of the eigenvalues of A⊤A

• One can also show that ∥A∥F =

√∑min{m,n}
i=1 σ2

i (A) using the fact that
∥A∥F =

√
Tr(A⊤A)
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Reduced SVD & Low Rank Approximation

• Rank of Λ is r =⇒ there are r non-zero eigenvalues of the matrices A⊤A and AA⊤

• Reduced SVD:
A︸︷︷︸

m×n

= Ur︸︷︷︸
m×r

Σr︸︷︷︸
r×r

V ⊤
r︸︷︷︸

r×n
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Low Rank Structure

A = Y

m× n m× r

Z⊤

r × n
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Low Rank Structure

A = uv⊤ =


— u1v

⊤ —
— u2v

⊤ —
...

— umv⊤ —

 =

 | |
v1u · · · vnu
| |



A = uv⊤ + wz⊤ =


— u1v

⊤ + w1z
⊤ —

— u2v
⊤ + w2z

⊤ —
...

— umv⊤ + wmz⊤ —

 =

 | |
u w
| |

[
— v⊤ —
— z⊤ —

]
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Low Rank Approximation

• Low Rank Approximation: take only top k-singular values and corresponding dyads in
the dyadic expansion

A ≈ Ak =

k∑
i=1

σi · uiv⊤i equivalently Ak = UkΣkV
⊤
k

• Low Rank Approximation is an important tool for many applications including
▶ Linear system identification: approximating matrix is Hankel structured. (You saw this in

M2-N2.ipynb)
▶ ML: feature space dimensionality reduction
▶ Recommender systems: matrix completion
▶ Distance matrix completion where there is a positive definiteness constraint.
▶ Natural language processing where the approximation is non-negative.
▶ Image or video compression
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Example: Compression
• Compression. A low-rank approximation provides a (lossy) compressed version of the

data matrix.
▶ The original matrix A is described by mn numbers, while describing Y and Z⊤ requires

only k(m+ n) numbers.
▶ When k is small relative to m and n, replacing the product of m and n by their sum is a

big win.
▶ With images, a modest value of k (say 100 or 150) is usually enough to achieve

approximations that look a lot like the original image.

bender in color gray scale rank 2 bender rank 20 bender rank 100 bender
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Optimality of Low Rank Approximation

• The low rank approximation obtained via SVD is optimal in the following sense.
• Recall the Forbenius norm:

∥A∥F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

= (Tr(A⊤A))1/2

• This is just the ℓ2-norm (i.e., usual Euclidean norm) applied to the matrix as if it were
a vector

• Theorem [Eckat-Young-Mirsky]. Ak =
∑k

i=1 σi · uiv⊤i is the closest matrix of rank
k to the matrix A: i.e,

∥A−Ak∥F ≤ ∥A−B∥F ∀ rank-k matrices B ∈ Rm×n
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How to choose k?

• When producing a low-rank matrix approximation, we have been taking as a parameter
the target rank k.

• Ideal Setting: the singular values of A give strong guidance
▶ if the top few singular values are big and the rest are small, then the obvious solution is

to take k equal to the number of “big values".
• Less Ideal Setting: take k as small as possible subject to obtaining a useful

approximation, where what “useful" means depends on the application.
▶ e.g., a common rule of thumb is to choose k such that the sum of the top k singular

values is at least c times as big as the sum of the other singular values, where c is a
domain-dependent constant (like 10, say).

[Lecturer: L.J. Ratliff] [EE445 Mod3-L2] 23



Next Up

• Next lecture we will talk about PCA, and show that PCA reduces to SVD and is
fundamentally connected to low rank approximations.
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