EE445 Mod3-Lec2: SVD \& Low Rank Approximation

References:

- [CE-OptMod]: Chapter: 5

Outline

1. M3-L1: Review Eigenvalues \& Eigenvectors
2. M3-L1: Symmetric Matrices
3. M3-L2 (this lecture): Singular value decomposition SVD \& low rank approximation

Overview

- We just talked about special classes of matrices that have a nice decomposition in terms of their eigenvalues-namely, symmetric PSD matrices.
- Now, we will talk about a matrix decomposition that every matrix has-i.e., SVD
- And, it is fundamentally related to a key ML analysis tool: PCA

Matrix Decomposition

- Matrix decomposition, also known as matrix factorization, involves describing a given matrix using its constituent elements.
- Recall that you saw QR decomposition in Module 1 and then its use in Module 2 (e.g., solving least squares, in particular sparse problems)
- Perhaps the most known and widely used matrix decomposition method is the Singular-Value Decomposition, or SVD.
- All matrices have an SVD, which makes it more stable than other methods, such as the eigen-decomposition.
- We will see the SVD is useful for computing the pseudoinverse efficiently and for dimensionality reduction

Singular Value Decomposition

What is SVD?

- One can generalize eigenvalues/vectors to non-square matrices, in which case they are called singular vectors and singular values.
- The SVD is a unique matrix decomposition that exists for every matrix $A \in \mathbb{R}^{m \times n}$:

$$
A=U \Sigma V^{\top}
$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are unitary matrices, and $\Sigma \in \mathbb{R}^{m \times n}$ is a matrix with non-negative entries on the diagonal and zeros on the off diagonal.

- Unitary: $U U^{\top}=I$ and $V V^{\top}=I$

SVD as a Dyadic Exanpsion

An equivalent way to express the $\operatorname{SVD} A=U \Sigma V^{\top}$ is as a dydic expansion:

$$
A=\sum_{i=1}^{\min \{m, n\}} \sigma_{i} \cdot u_{i} v_{i}^{\top}
$$

(i.e., weighted sum of dyads)

- That is, the SVD expresses A as a nonnegative linear combination of $\min \{m, n\}$ rank-1 matrices
- the singular values provide the multipliers
- the outer products of the left and right singular vectors provide the rank-1 matrices.

SVD

- The diagonal entries of Σ are called the singular values of A
- The column vectors of V are called the right singular vectors of A
- The column vectors of U are called the left singular vectors of A.
- The number of nonzero singular values is equal to the rank of the matrix A.

Geometric View of SVD

Unpacking the SVD

- Let $A \in \mathbb{R}^{m \times n}$
- Fact 1 . Both $A^{\top} A \in \mathbb{R}^{n \times n}$ and $A A^{\top} \in \mathbb{R}^{m \times m}$ are symmetric square matrices:

$$
\left(A^{\top} A\right)^{\top}=A^{\top}\left(A^{\top}\right)^{\top}=A^{\top} A \quad \text { and } \quad\left(A A^{\top}\right)^{\top}=\left(A^{\top}\right)^{\top} A^{\top}=A A^{\top}
$$

- Fact 2. Both $A^{\top} A$ and $A A^{\top}$ share the same non-zero eigenvalues: let (λ, v) be an eigenvalue-eigenvector pair for $A^{\top} A$ so that

$$
A^{\top} A v=\lambda v \Longrightarrow A A^{\top} \underbrace{A v}_{u}=\lambda A v \Longrightarrow(\lambda, u) \text { is eigenpair of } A A^{\top}
$$

Unpacking the SVD

- According to the othogonally diagonalizable property of symmetric matrices, the matrices $A^{\top} A$ and $A A^{\top}$ can be decomposed as following:

$$
A^{\top} A=V \Lambda V^{\top} \quad \text { and } \quad A A^{\top}=U \Lambda U^{\top}
$$

- Indeed, if $A=U \Sigma V^{\top}$ then

$$
A^{\top} A=\left(U \Sigma V^{\top}\right)^{\top}(U \Sigma V)=V \Sigma^{\top} U^{\top} U \Sigma V^{\top}=V \Sigma^{\top} \Sigma V^{\top}
$$

- Can compute by diagonalizing the PSD symmetric matrices $A^{\top} A$ and $A A^{\top}$

Using the SVD to Compute Pseudo Inverses

- It turns out that using the SVD we have a very easy way to compute the pseudo-inverse of A-i.e., $A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top}$ which we saw in Mod1 \& Mod2
- Indeed

$$
A^{\dagger}=\left(V \Sigma^{\top} \Sigma V^{\top}\right)^{-1} V \Sigma U^{\top}=V\left(\Sigma^{\top} \Sigma\right)^{-1} V^{\top} V \Sigma U^{\top}=V\left(\Sigma^{\top} \Sigma\right)^{-1} \Sigma U^{\top}
$$

since Σ is a diagonal matrix, its pseudo-inverse is just a diagonal matrix with the reciprocals of the nonzero elements on the diagonal.

Matrix Norms and Connections to Singular values

- Matrix norms and singular values have special relationships.
- Forbenius Norm:

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}=\left(\operatorname{Tr}\left(A^{\top} A\right)\right)^{1 / 2}
$$

- Matrix p-norm: matrix p-Norm is defined as the largest scalar that you can get for a unit vector

$$
\|A\|_{p}=\sup _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}=\max _{\|x\|_{p}=1}\|A x\|_{p}
$$

- Aside: supremum $\sup (\cdot)$ is the " least upper bound" of its argument

Spectral Radius

- Definition (Spectral Radius): The spectral radius $\rho(A)$ is the maximum modulus of the eigenvalues of A-i.e., $\rho(A)=\max _{i=1, \ldots, n}\left|\lambda_{i}(A)\right|$.
- It is not an induced norm (since $\rho(A)=0$ does not imply $A=0$), however we do have the property that $\rho(A) \leq\|A\|_{p}$ for any p.
- Indeed, letting $\left(\lambda_{i}, v_{i}\right)$ where $v_{i} \neq 0$ be an eigenpair of A, we have

$$
\|A\|_{p}\left\|v_{i}\right\|_{p} \geq\left\|A v_{i}\right\|_{p}=\left\|\lambda_{i} v_{i}\right\|_{p}=\left|\lambda_{i}\right|\left\|v_{i}\right\|_{p} \Longrightarrow\left|\lambda_{i}\right| \leq\|A\|_{p} \forall i
$$

Common Matrix Norms

Other norms of interest include the 1 -norm and ∞-norms.

- 1-norm (ℓ_{1}): consider $x \in \mathbb{R}^{n}$. The ℓ_{1}-norm is given by $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- ∞-norm $\left(\ell_{\infty}\right)$: consider $x \in \mathbb{R}^{n}$. The ℓ_{∞}-norm is given by $\|x\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|$

We can define induced norms from these ℓ_{p} norms:

$$
\begin{aligned}
& \|A\|_{1}=\max _{\|x\|_{1}=1}\|A x\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1}^{m}\left|a_{i j}\right| \quad \text { i.e., the max column sum } \\
& \|A\|_{\infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i j}\right| \quad \text { i.e., the max row sum }
\end{aligned}
$$

Matrix Norms: Spectral Norm

- Spectral Norm (Matrix 2-norm): Largest singular value of the matrix $\sigma_{1}(A)$

$$
\begin{aligned}
\max _{\|x\|_{2}=1}\|A x\|_{2}=\max _{\|x\|_{2}=1}\left(x^{\top} A^{\top} A x\right)^{1 / 2} & =\max _{\|x\|_{2}=1}(x^{\top} V \Sigma^{2} \underbrace{V^{\top} x}_{=: y})^{1 / 2} \\
& =\max _{\|y\|_{2}=1}\left(y^{\top} \Sigma^{2} y\right)^{1 / 2}=\sigma_{1}(A)
\end{aligned}
$$

where in the last equality we choose x to be the eigenvector of $A^{\top} A$ corresponding to the largest eigenvalue.

- Aside: singular values are the square roots of the eigenvalues of $A^{\top} A$
- One can also show that $\|A\|_{F}=\sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}(A)}$ using the fact that $\|A\|_{F}=\sqrt{\operatorname{Tr}\left(A^{\top} A\right)}$

Reduced SVD \& Low Rank Approximation

- Rank of Λ is $r \Longrightarrow$ there are r non-zero eigenvalues of the matrices $A^{\top} A$ and $A A^{\top}$
- Reduced SVD:

$$
\underbrace{A}_{m \times n}=\underbrace{U_{r}}_{m \times r} \underbrace{\Sigma_{r}}_{r \times r} \underbrace{V_{r}^{\top}}_{r \times n}
$$

Low Rank Structure

Low Rank Structure

$$
\begin{gathered}
A=u v^{\top}=\left[\begin{array}{ccc}
- & u_{1} v^{\top} & - \\
- & u_{2} v^{\top} & - \\
\vdots & \\
- & u_{m} v^{\top} & -
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} u & \cdots & v_{n} u \\
\mid & & \mid
\end{array}\right] \\
A=u v^{\top}+w z^{\top}=\left[\begin{array}{ccc}
- & u_{1} v^{\top}+w_{1} z^{\top} & - \\
- & u_{2} v^{\top}+w_{2} z^{\top} & - \\
\vdots & \\
- & u_{m} v^{\top}+w_{m} z^{\top} & -
\end{array}\right]=\left[\begin{array}{cc}
\mid & \mid \\
u & w \\
\mid & \mid
\end{array}\right]\left[\begin{array}{lll}
- & v^{\top} & - \\
- & z^{\top} & -
\end{array}\right]
\end{gathered}
$$

Low Rank Approximation

- Low Rank Approximation: take only top k-singular values and corresponding dyads in the dyadic expansion

$$
A \approx A_{k}=\sum_{i=1}^{k} \sigma_{i} \cdot u_{i} v_{i}^{\top} \quad \text { equivalently } \quad A_{k}=U_{k} \Sigma_{k} V_{k}^{\top}
$$

- Low Rank Approximation is an important tool for many applications including
- Linear system identification: approximating matrix is Hankel structured. (You saw this in M2-N2. ipynb)
- ML: feature space dimensionality reduction
- Recommender systems: matrix completion
- Distance matrix completion where there is a positive definiteness constraint.
- Natural language processing where the approximation is non-negative.
- Image or video compression

Example: Compression

- Compression. A low-rank approximation provides a (lossy) compressed version of the data matrix.
- The original matrix A is described by $m n$ numbers, while describing Y and Z^{\top} requires only $k(m+n)$ numbers.
- When k is small relative to m and n, replacing the product of m and n by their sum is a big win.
- With images, a modest value of k (say 100 or 150) is usually enough to achieve approximations that look a lot like the original image.

Optimality of Low Rank Approximation

- The low rank approximation obtained via SVD is optimal in the following sense.
- Recall the Forbenius norm:

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}=\left(\operatorname{Tr}\left(A^{\top} A\right)\right)^{1 / 2}
$$

- This is just the ℓ_{2}-norm (i.e., usual Euclidean norm) applied to the matrix as if it were a vector
- Theorem [Eckat-Young-Mirsky]. $A_{k}=\sum_{i=1}^{k} \sigma_{i} \cdot u_{i} v_{i}^{\top}$ is the closest matrix of rank k to the matrix A : i.e,

$$
\left\|A-A_{k}\right\|_{F} \leq\|A-B\|_{F} \quad \forall \text { rank- } k \text { matrices } B \in \mathbb{R}^{m \times n}
$$

How to choose k ?

- When producing a low-rank matrix approximation, we have been taking as a parameter the target rank k.
- Ideal Setting: the singular values of A give strong guidance
- if the top few singular values are big and the rest are small, then the obvious solution is to take k equal to the number of "big values".
- Less Ideal Setting: take k as small as possible subject to obtaining a useful approximation, where what "useful" means depends on the application.
- e.g., a common rule of thumb is to choose k such that the sum of the top k singular values is at least c times as big as the sum of the other singular values, where c is a domain-dependent constant (like 10, say).

Next Up

- Next lecture we will talk about PCA, and show that PCA reduces to SVD and is fundamentally connected to low rank approximations.

