EE445 Mod3-Lec2: SVD & Low Rank Approximation

References:

• [CE-OptMod]: Chapter: 5

Outline

1. M3-L1: Review Eigenvalues & Eigenvectors

2. M3-L1: Symmetric Matrices

3. M3-L2 (this lecture): Singular value decomposition SVD & low rank approximation

Overview

- We just talked about special classes of matrices that have a nice decomposition in terms of their eigenvalues—namely, symmetric PSD matrices.
- Now, we will talk about a matrix decomposition that every matrix has—i.e., SVD
- And, it is fundamentally related to a key ML analysis tool: PCA

Matrix Decomposition

- Matrix decomposition, also known as matrix factorization, involves describing a given matrix using its constituent elements.
- Recall that you saw QR decomposition in Module 1 and then its use in Module 2
 (e.g., solving least squares, in particular sparse problems)
- Perhaps the most known and widely used matrix decomposition method is the Singular-Value Decomposition, or SVD.
- All matrices have an SVD, which makes it more stable than other methods, such as the eigen-decomposition.
- We will see the SVD is useful for computing the pseudoinverse efficiently and for dimensionality reduction

Singular Value Decomposition

What is SVD?

- One can generalize eigenvalues/vectors to non-square matrices, in which case they are called singular vectors and singular values.
- The SVD is a unique matrix decomposition that exists for every matrix $A \in \mathbb{R}^{m \times n}$:

$$A = U\Sigma V^{\top}$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are unitary matrices, and $\Sigma \in \mathbb{R}^{m \times n}$ is a matrix with non-negative entries on the diagonal and zeros on the off diagonal.

• Unitary: $UU^{\top} = I$ and $VV^{\top} = I$

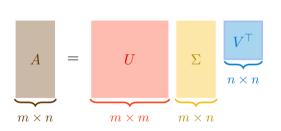
SVD as a Dyadic Exampsion

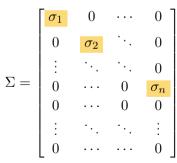
An equivalent way to express the SVD $A = U\Sigma V^{\top}$ is as a dyadic expansion:

- ullet That is, the SVD expresses A as a nonnegative linear combination of $\min\{m,n\}$ rank-1 matrices
- the singular values provide the multipliers
- the outer products of the left and right singular vectors provide the rank-1 matrices.

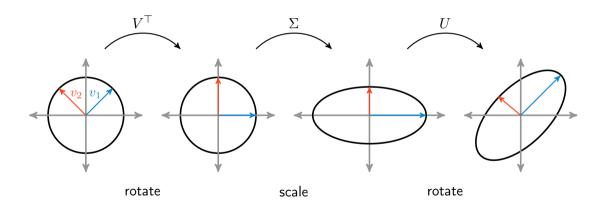
SVD

- ullet The diagonal entries of Σ are called the singular values of A
- The column vectors of V are called the right singular vectors of A
- The column vectors of U are called the left singular vectors of A.
- The number of nonzero singular values is equal to the rank of the matrix A.





Geometric View of SVD



Unpacking the SVD

- Let $A \in \mathbb{R}^{m \times n}$
- Fact 1. Both $A^{\top}A \in \mathbb{R}^{n \times n}$ and $AA^{\top} \in \mathbb{R}^{m \times m}$ are symmetric square matrices:

• Fact 2. Both $A^{\top}A$ and AA^{\top} share the same non-zero eigenvalues:

Unpacking the SVD

• According to the othogonally diagonalizable property of symmetric matrices, the matrices $A^{\top}A$ and AA^{\top} can be decomposed as following:

• How to obtain the SVD?: Compute by diagonalizing the PSD symmetric matrices $A^{\top}A$ and AA^{\top}

Using the SVD to Compute Pseudo Inverses

• It turns out that using the SVD we have a very easy way to compute the pseudo-inverse of A—i.e., $A^{\dagger} = (A^{\top}A)^{-1}A^{\top}$ which we saw in Mod1 & Mod2

Matrix Norms and Connections to Singular values

• Matrix norms and singular values have special relationships.

Forbenius Norm:

• Matrix *p*-norm:

• Aside: supremum $\sup(\cdot)$ is the "least upper bound" of its argument

Spectral Radius

- **Definition (Spectral Radius)**: The spectral radius $\rho(A)$ is the maximum modulus of the eigenvalues of A—i.e., $\rho(A) = \max_{i=1,\dots,n} |\lambda_i(A)|$.
- It is not an induced norm (since $\rho(A) = 0$ does not imply A = 0), however we do have the property that $\rho(A) \leq ||A||_p$ for any p.
- Indeed, letting (λ_i, v_i) where $v_i \neq 0$ be an eigenpair of A:

Common Matrix Norms

Other norms of interest include the 1-norm and ∞ -norms.

- 1-norm (ℓ_1): consider $x \in \mathbb{R}^n$. The ℓ_1 -norm is given by $||x||_1 = \sum_{i=1}^n |x_i|$
- ∞ -norm (ℓ_{∞}) : consider $x \in \mathbb{R}^n$. The ℓ_{∞} -norm is given by $||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$

We can define induced norms from these ℓ_p norms:

$$\|A\|_1 = \max_{\|x\|_1 = 1} \|Ax\|_1 = \max_{j = 1, \dots, n} \sum_{i = 1}^m |a_{ij}| \quad \text{i.e., the max column sum}$$

$$\|A\|_{\infty} = \max_{\|x\|_{\infty} = 1} \|Ax\|_{\infty} = \max_{i = 1, \dots, m} \sum_{i = 1}^n |a_{ij}| \quad \text{i.e., the max row sum,}$$

Matrix Norms: Spectral Norm

• Spectral Norm (Matrix 2-norm): Largest singular value of the matrix $\sigma_1(A)$

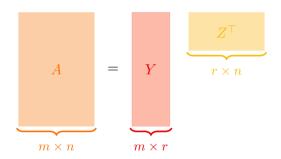
• Fact: show that $\|A\|_F = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2(A)}$ using the fact that $\|A\|_F = \sqrt{\operatorname{Tr}(A^\top A)}$

[Lecturer: L.J. Ratliff]

Reduced SVD & Low Rank Approximation

- Rank of Λ is $r \implies$ there are r non-zero eigenvalues of the matrices $A^{\top}A$ and AA^{\top}
- Reduced SVD:

Low Rank Structure



Low Rank Structure

$$A = uv^{\top} =$$

$$A = uv^{\top} + wz^{\top} =$$

Low Rank Approximation

• Low Rank Approximation: take only top k-singular values and corresponding dyads in the dyadic expansion

- Low Rank Approximation is an important tool for many applications including
 - Linear system identification: approximating matrix is Hankel structured. (You saw this in M2-N2.ipynb)
 - ► ML: feature space dimensionality reduction
 - ► Recommender systems: matrix completion
 - Distance matrix completion where there is a positive definiteness constraint.
 - Natural language processing where the approximation is non-negative.
 - Image or video compression

Example: Compression

- Compression. A low-rank approximation provides a (lossy) compressed version of the data matrix.
 - ▶ The original matrix A is described by mn numbers, while describing Y and Z^{\top} requires only k(m+n) numbers.
 - When k is small relative to m and n, replacing the product of m and n by their sum is a big win.
 - With images, a modest value of k (say 100 or 150) is usually enough to achieve approximations that look a lot like the original image.

bender in color gray scale rank 2 bender rank 20 bender rank 100 bender

Optimality of Low Rank Approximation

- The low rank approximation obtained via SVD is optimal in the following sense.
- Recall the Forbenius norm:

- i.e., ℓ_2 -norm (i.e., usual Euclidean norm) applied to the matrix as if it were a vector
- Theorem [Eckat-Young-Mirsky].

How to choose k?

- When producing a low-rank matrix approximation, we have been taking as a parameter the target rank k.
- Ideal Setting: the singular values of A give strong guidance
 - ightharpoonup if the top few singular values are big and the rest are small, then the obvious solution is to take k equal to the number of "big values".
- Less Ideal Setting: take k as small as possible subject to obtaining a useful approximation, where what "useful" means depends on the application.
 - ightharpoonup e.g., a common rule of thumb is to choose k such that the sum of the top k singular values is at least c times as big as the sum of the other singular values, where c is a domain-dependent constant (like 10, say).

Next Up

• Next lecture we will talk about PCA, and show that PCA reduces to SVD and is fundamentally connected to low rank approximations.