## EE445 Mod3-Lec2: Supplement

## References:

- [CE-OptMod]: Chapter: 5


## Common Matrix Norms

Other norms of interest include the 1 -norm and $\infty$-norms.

- 1-norm ( $\ell_{1}$ ): consider $x \in \mathbb{R}^{n}$. The $\ell_{1}$-norm is given by $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- $\infty$-norm $\left(\ell_{\infty}\right)$ : consider $x \in \mathbb{R}^{n}$. The $\ell_{\infty}$-norm is given by $\|x\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|$

We can define induced norms from these $\ell_{p}$ norms:

$$
\begin{aligned}
& \|A\|_{1}=\max _{\|x\|_{1}=1}\|A x\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1}^{m}\left|a_{i j}\right| \quad \text { i.e., the max column sum } \\
& \|A\|_{\infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i j}\right| \text { i.e., the max row sum }
\end{aligned}
$$

## Proof of $\|A\|_{\infty}$ being max row sum

- Indeed, we have that

$$
\|A x\|_{\infty}=\max _{i=1, \ldots, m}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \leq \max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i j}\right|\left|x_{j}\right| \leq \max _{j=1, \ldots, n}\left|x_{j}\right| \max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

- Then since $\|x\|_{\infty}=1$, we have that

$$
\|A x\|_{\infty} \leq \max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

- Next, you show that there exists $\tilde{x}$ such that $\|\tilde{x}\|_{\infty}=1$ and

$$
\|A \tilde{x}\|_{\infty}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

## Proof of $\|A\|_{\infty}$ being max row sum

- Next, you show that there exists $\tilde{x}$ such that $\|\tilde{x}\|_{\infty}=1$ and

$$
\|A \tilde{x}\|_{\infty}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

- Indeed, the $\|\tilde{x}\|_{\infty}=1$ that maximizes this quantity is $\tilde{x}$ such that its entries are $\tilde{x}_{j}=\operatorname{sign}\left(a_{i^{*} j}\right)$ for $j=1, \ldots, n$ where $i^{*}=\arg \max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|a_{i j}\right|$.
- That is, with this choice of $x$, the inequalities above become equalities.

