EE445 Mod3-Lec2: Supplement

References:

• [CE-OptMod]: Chapter: 5

[Lecturer: L.J. Ratliff]

[EE445 Mod3-L2]

Common Matrix Norms

Other norms of interest include the 1-norm and ∞ -norms.

• 1-norm (ℓ_1): consider $x \in \mathbb{R}^n$. The ℓ_1 -norm is given by $||x||_1 = \sum_{i=1}^n |x_i|$

• ∞ -norm (ℓ_{∞}) : consider $x \in \mathbb{R}^n$. The ℓ_{∞} -norm is given by $||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$ We can define induced norms from these ℓ_p norms:

$$\|A\|_{1} = \max_{\|x\|_{1}=1} \|Ax\|_{1} = \max_{j=1,\dots,n} \sum_{i=1}^{m} |a_{ij}| \quad \text{i.e., the max column sum}$$
$$\|A\|_{\infty} = \max_{\|x\|_{\infty}=1} \|Ax\|_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}| \quad \text{i.e., the max row sum,}$$

[Lecturer: L.J. Ratliff]

Proof of $||A||_{\infty}$ being max row sum

• Indeed, we have that

$$||Ax||_{\infty} = \max_{i=1,\dots,m} \left| \sum_{j=1}^{n} a_{ij} x_j \right| \le \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}| |x_j| \le \max_{j=1,\dots,n} |x_j| \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|.$$

• Then since $||x||_{\infty} = 1$, we have that

$$||Ax||_{\infty} \le \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$$

• Next, you show that there exists \tilde{x} such that $\|\tilde{x}\|_{\infty} = 1$ and

$$||A\tilde{x}||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$$

[Lecturer: L.J. Ratliff]

[EE445 Mod3-L2]

Proof of $||A||_{\infty}$ being max row sum

• Next, you show that there exists \tilde{x} such that $\|\tilde{x}\|_{\infty} = 1$ and

$$||A\tilde{x}||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$$

- Indeed, the $\|\tilde{x}\|_{\infty} = 1$ that maximizes this quantity is \tilde{x} such that its entries are $\tilde{x}_j = \operatorname{sign}(a_{i^*j})$ for $j = 1, \ldots, n$ where $i^* = \arg \max_{i=1,\ldots,m} \sum_{j=1}^n |a_{ij}|$.
- That is, with this choice of x, the inequalities above become equalities.