
EE445 Mod3-Lec1: Spectral Properties of Matrices

References:
• [CE-OptMod]: Chapter 3.3, 4, 5
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Outline

1. Review Eigenvalues & Eigenvectors
2. Symmetric Matrices
3. Mod3-L2: Introduction to Singular values and SVD
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Why are Spectral Properties Important in ML+OPT?

• Computational efficiency
• Analysis
• Dimensionality reduction
• Numerical stability

How will we see it used?
1. Kernel methods
2. Principle component analysis (unsupervised ML)
3. Principle component regression
4. (time permitting) spectral clustering
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Reminder: Eigenvalues & Eigenvectors

Some basics:
• Definition: The polynomial p(λ) = det(A− λI) is called the characteristic

polynomial of A. The roots of p(λ) = 0 are the eigenvalues of A.
• Definition: A nonzero vector x satisfying Ax = λx is a ( right) eigenvector for the

eigenvalue λ. A nonzero vector y such that y∗A = λy∗ is a (left) eigenvector for the
eigenvalue λ.

• Recall that y∗ = (ȳ)⊤.
• let {x1, . . . , xn} be the eigenvectors of A

▶ Orthogonal eigenvectors: ⟨xi, xj ⟩ = x⊤
i xj = 0, i ̸= j

▶ Orthonormal eigenvectors: ⟨xi, xj ⟩ = x⊤
i xj = 0, i ̸= j and ∥xi∥ = 1 for all i
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Reminder: Eigenvalues & Eigenvectors

Why important?
• Many ML algorithms involve transforming the matrix A into simpler, or canonical

forms, from which it is easy to compute its eigenvalues and eigenvectors.
• These transformations are called similarity transformations
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Similarity transforms

• Definition: Let S be any nonsingular matrix. Then A and B = S−1AS are called
similar matrices, and S is a similarity transformation.

• Proposition. Similar matrices A and B has the same eigenvalues. Moreover,

x is a right eigenvector of A ⇐⇒ S−1x is a right eigenvector of B

y is a left eigenvector of A ⇐⇒ S∗y is a left eigenvector of B

• Some special matrices are similar to diagonal matrices—i.e., for some matrices A, there
is a similarity transform S such that Λ = S−1AS is diagonal, and Λ contains the
eigenvalues of A.

• These matrices are called diagonalizable.
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Part 2. Special Matrices [Symmetric and Positive (semi) definite]
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Symmetric Matrices

Symmetric Matrix: The matrix A ∈ Rn×n is symmetric if A⊤ = A

• Symmetric matrices are one of the most important matrices in linear algebra and ML
• Mod2-L4: we often use kernel matrices K = [K(x(i), x(j))] and these are

symmetric—i.e., K = K⊤—since K(x(i), x(j)) = K(x(j), x(i))

• Mod2-L2: Gram matrices A⊤A and AA⊤ are symmetric;
▶ in fact we can study all kinds of properties of a matrix A such as the range and null

spaces using these gram matrices (cf. Finite Rank Operator Lemma)
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Symmetric Matrices: Examples

1. The graph Laplacian is a symmetric matrix

Lij =


# of edges incident to node i, if i = j
−1, if there is an edge (i, j)
0, otherwise

2. Sample covariance matrix

Σ =
1

m

m∑
i=1

(x(i) − x̄)(x(i) − x̄)⊤, where x̄ =
1

m

m∑
i=1

x(i)

3. Hessian of a function: H = ∇2f(x), where Hij =
∂2

∂xi∂xj
f(x)
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Quadratic Functions

• Symmetric matrices play an important role not just in ML but also OPT
• We have seen how to formulate least squares regression as a optimization problem with

a quadratic objective:

∥Ax− b∥22 = (Ax− b)⊤(Ax− b)

• A quadratic function f : Rn → R is a second-order multivariate polynomial in x, that is
a function containing a linear combination of all possible monomials of degree at most
two—i.e.,

f(x) =

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

cixi + d ⇐⇒ f(x) = x⊤Ax+ c⊤x+ d

• Least squares:
x⊤Ax− 2b⊤Ax+ b⊤b
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Quadratic Functions
• using properties of symmetric matrices, we can express any quadratic function as a

quadratic form.
• Fact: x⊤Ax is a scalar so that

x⊤Ax = x⊤A⊤x =⇒ x⊤Ax =
1

2
x⊤ (A+A⊤)︸ ︷︷ ︸

=:H

x

• Aside:
A =

1

2
(A+A⊤)︸ ︷︷ ︸

symmetric part

+
1

2
(A−A⊤)︸ ︷︷ ︸

antisymmetric part

• Hence, we have

f(x) =
1

2
x⊤Hx+ c⊤x+ d =

1

2

[
x
1

]⊤ [
H c
c⊤ 2d

] [
x
1

]
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Symmetric Matrices: Eigendecomposition (Spectral Theorem)

• Every symmetric matrix A can be diagonalized as A = V ΛV ⊤ with V formed by the
orthonormal eigenvectors of A and Λ = diag(λ1, . . . , λn) a diagonal matrix of the
eigenvalues of A

A =

 | · · · |
v1 · · · vn
| · · · |


︸ ︷︷ ︸

V


λ1 0 · · · 0

0
. . . . . .

...
...

. . . λn−1 0
0 · · · 0 λn


︸ ︷︷ ︸

Λ

– v⊤1 –
...

...
...

– v⊤n –


︸ ︷︷ ︸

V ⊤

or equivalently, A = λ1v1v
⊤
1 + · · ·+ λnvnv

⊤
n (i.e., weighted sum of dyads)

• Additionally, V V ⊤ = V ⊤V = I

• This factorization property and the fact that S has n orthogonal eigenvectors are two
important properties for a symmetric matrix.
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Example Problem: Eigenvalues are Real

Problem: Consider a symmetric matrix A. Show that the eigenvalues of A are real.
Solution. Consider Ax = λx with x ̸= 0. Recall that

⟨x, x ⟩ = x∗x = (x̄)⊤x

Then,

λ ⟨x, x ⟩ = (x̄)⊤(λx) = (x̄)⊤Ax = (A⊤x̄)⊤x = (Ax̄)⊤x = (Āx̄)⊤x = (λ̄x̄)⊤x = λ̄ ⟨x, x ⟩

so that λ = λ̄.
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Example Problem: Orthogonality of Eigenvectors

Problem: Consider a symmetric matrix A. Show that eigenvectors corresponding to distinct
eigenvalues are orthogonal.
Solution. Indeed consider eigenvalue-eigenvector pair (λ, x) and eigenvalue-eigenvector pair
(µ, z) with µ ̸= λ. Then,

λ ⟨x, z ⟩ = ⟨Ax, z ⟩ = (Ax)⊤z = x⊤A⊤z = x⊤Az = µ ⟨x, z ⟩ =⇒ ⟨x, z ⟩ = x⊤z = 0
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Matrix powers with eigendecomposition

• Recall from Mod1 we saw many applications with matrix powers such as computing
the number of paths of length k in a graph

• For symmetric matrices, computing matrix powers is easy
• Indeed, A = A⊤ has orthonormal eigendecomposition A = V ΛV ⊤ so that

Ak = (V ΛV ⊤) · · · (V ΛV ⊤)︸ ︷︷ ︸
k times

= V ΛkV ⊤ since V ⊤V = I
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Positive Definite Matrices

• Another important class of matrices are positive definite matrices
• The matrix A is positive definite if ⟨Ax, x ⟩ > 0; sometimes we write A ≻ 0

• And, A is positive semidefinite (PSD) if ⟨Ax, x ⟩ ≥ 0; sometimes we write A ⪰ 0

• Positive definite matrices need not be symmetric, but often we are interested in positive
definite symmetric matrices

• Eigenvalues: let λ1(A) ≥ · · · ≥ λn(A) be the order set of eigenvalues of A = A⊤

A ⪰ 0 ⇐⇒ λi(A) ≥ 0, ∀i ∈ {1, . . . , n}

A ≻ 0 ⇐⇒ λi(A) > 0, ∀i ∈ {1, . . . , n}
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Example Problem

• Show that A ⪰ 0 ⇐⇒ λi(A) ≥ 0, ∀i ∈ {1, . . . , n}
• solution: A is symmetric and hence it can be diagonalized. Let A = V ΛV ⊤ so that

x⊤Ax = x⊤V︸︷︷︸
=:z⊤

ΛV ⊤ = z⊤Λz =

n∑
i=1

λi(A)z2i

Hence
x⊤Ax ≥ 0 ∀x ∈ Rn ⇐⇒ z⊤Λz ≥ 0 ∀z ∈ Rn

And, the right hand side of the equivalence above is itself equivalent to λi(A) ≥ 0 for
all i ∈ {1, . . . , n}
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Examples of PSD Matrices from ML and OPT

• Mod2-L4: we often use kernel matrices K = [K(x(i), x(j))] and these are symmetric
and in general PSD

• Mod2-L2: Gram matrices A⊤A and AA⊤ are PSD
Problem: Show that Gram and Kernel matrices are PSD.
solution. Consider the general case of a kernel matrix:
Gij = K(x(i), x(j)) = ⟨ϕ(x(i)), ϕ(x(j)) ⟩ for i, j. THen for any vector v we have

v⊤Gv =

n∑
i=1

n∑
j=1

vivjGij =

n∑
i=1

n∑
j=1

vivj ⟨ϕ(x(i)), ϕ(x(j)) ⟩

=

〈 n∑
i=1

viϕ(x
(i)),

n∑
j=1

vjϕ(x
(j))

〉
=

∥∥∥∥∥
n∑

i=1

viϕ(x
(i))

∥∥∥∥∥
2

≥ 0
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Example Problem

Problem. Show that a matrix A is PSD if and only if A = B⊤B for some real matrix B.
Solution.
(=⇒) : Now suppose A is PSD. Let AV = V Λ be the eigendecomposition of A and set
B =

√
ΛV ⊤ where

√
Λ = diag(

√
λ1, . . . ,

√
λn). The matrix exists since the eigenvalues are

non-negative. Hence

B⊤B = V
√
Λ
√
ΛV ⊤ = V ΛV ⊤ = AV V ⊤ = A.

(⇐=) : Suppose A = B⊤B so that for any vector v we have

v⊤Av = v⊤B⊤Bv = ∥Bv∥2 ≥ 0 =⇒ A is PSD
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