EE445 Mod3-Lec1: Spectral Properties of Matrices

References:

- [CE-OptMod]: Chapter 3.3, 4, 5

Outline

1. Review Eigenvalues \& Eigenvectors
2. Symmetric Matrices
3. Mod3-L2: Introduction to Singular values and SVD

Why are Spectral Properties Important in ML+OPT?

- Computational efficiency
- Analysis
- Dimensionality reduction
- Numerical stability

How will we see it used?

1. Kernel methods
2. Principle component analysis (unsupervised ML)
3. Principle component regression
4. (time permitting) spectral clustering

Reminder: Eigenvalues \& Eigenvectors

Some basics:

- Definition: The polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial of A. The roots of $p(\lambda)=0$ are the eigenvalues of A.
- Definition: A nonzero vector x satisfying $A x=\lambda x$ is a (right) eigenvector for the eigenvalue λ. A nonzero vector y such that $y^{*} A=\lambda y^{*}$ is a (left) eigenvector for the eigenvalue λ.
- Recall that $y^{*}=(\bar{y})^{\top}$.
- let $\left\{x_{1}, \ldots, x_{n}\right\}$ be the eigenvectors of A
- Orthogonal eigenvectors: $\left\langle x_{i}, x_{j}\right\rangle=x_{i}^{\top} x_{j}=0, i \neq j$
- Orthonormal eigenvectors: $\left\langle x_{i}, x_{j}\right\rangle=x_{i}^{\top} x_{j}=0, i \neq j$ and $\left\|x_{i}\right\|=1$ for all i

Reminder: Eigenvalues \& Eigenvectors

Why important?

- Many ML algorithms involve transforming the matrix A into simpler, or canonical forms, from which it is easy to compute its eigenvalues and eigenvectors.
- These transformations are called similarity transformations

Similarity transforms

- Definition: Let S be any nonsingular matrix. Then A and $B=S^{-1} A S$ are called similar matrices, and S is a similarity transformation.
- Proposition. Similar matrices A and B has the same eigenvalues. Moreover,

$$
\begin{gathered}
x \text { is a right eigenvector of } A \Longleftrightarrow S^{-1} x \text { is a right eigenvector of } B \\
y \text { is a left eigenvector of } A \Longleftrightarrow S^{*} y \text { is a left eigenvector of } B
\end{gathered}
$$

- Some special matrices are similar to diagonal matrices-i.e., for some matrices A, there is a similarity transform S such that $\Lambda=S^{-1} A S$ is diagonal, and Λ contains the eigenvalues of A.
- These matrices are called diagonalizable.

Part 2. Special Matrices [Symmetric and Positive (semi) definite]

Symmetric Matrices

Symmetric Matrix: The matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^{\top}=A$

- Symmetric matrices are one of the most important matrices in linear algebra and ML
- Mod2-L4: we often use kernel matrices $K=\left[K\left(x^{(i)}, x^{(j)}\right)\right]$ and these are symmetric—i.e., $K=K^{\top}$-since $K\left(x^{(i)}, x^{(j)}\right)=K\left(x^{(j)}, x^{(i)}\right)$
- Mod2-L2: Gram matrices $A^{\top} A$ and $A A^{\top}$ are symmetric;
- in fact we can study all kinds of properties of a matrix A such as the range and null spaces using these gram matrices (cf. Finite Rank Operator Lemma)

Symmetric Matrices: Examples

1. The graph Laplacian is a symmetric matrix

$$
L_{i j}= \begin{cases}\# \text { of edges incident to node } i, & \text { if } i=j \\ -1, & \text { if there is an edge }(i, j) \\ 0, & \text { otherwise }\end{cases}
$$

2. Sample covariance matrix

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\bar{x}\right)\left(x^{(i)}-\bar{x}\right)^{\top}, \quad \text { where } \bar{x}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}
$$

3. Hessian of a function: $H=\nabla^{2} f(x)$, where $H_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)$

Quadratic Functions

- Symmetric matrices play an important role not just in ML but also OPT
- We have seen how to formulate least squares regression as a optimization problem with a quadratic objective:

$$
\|A x-b\|_{2}^{2}=(A x-b)^{\top}(A x-b)
$$

- A quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a second-order multivariate polynomial in x, that is a function containing a linear combination of all possible monomials of degree at most two-i.e.,

$$
f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}+\sum_{i=1}^{n} c_{i} x_{i}+d \Longleftrightarrow f(x)=x^{\top} A x+c^{\top} x+d
$$

- Least squares:

$$
x^{\top} A x-2 b^{\top} A x+b^{\top} b
$$

Quadratic Functions

- using properties of symmetric matrices, we can express any quadratic function as a quadratic form.
- Fact: $x^{\top} A x$ is a scalar so that

$$
x^{\top} A x=x^{\top} A^{\top} x \quad \Longrightarrow \quad x^{\top} A x=\frac{1}{2} x^{\top} \underbrace{\left(A+A^{\top}\right)}_{=: H} x
$$

- Aside:

$$
A=\underbrace{\frac{1}{2}\left(A+A^{\top}\right)}_{\text {symmetric part }}+\underbrace{\frac{1}{2}\left(A-A^{\top}\right)}_{\text {antisymmetric part }}
$$

- Hence, we have

$$
f(x)=\frac{1}{2} x^{\top} H x+c^{\top} x+d=\frac{1}{2}\left[\begin{array}{l}
x \\
1
\end{array}\right]^{\top}\left[\begin{array}{cc}
H & c \\
c^{\top} & 2 d
\end{array}\right]\left[\begin{array}{l}
x \\
1
\end{array}\right]
$$

Symmetric Matrices: Eigendecomposition (Spectral Theorem)

- Every symmetric matrix A can be diagonalized as $A=V \Lambda V^{\top}$ with V formed by the orthonormal eigenvectors of A and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ a diagonal matrix of the eigenvalues of A

$$
A=\underbrace{\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & \cdots & \mid
\end{array}\right]}_{V} \underbrace{\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \lambda_{n-1} & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{ccc}
- & v_{1}^{\top} & - \\
\vdots & \vdots & \vdots \\
- & v_{n}^{\top} & -
\end{array}\right]}_{V^{\top}}
$$

or equivalently, $A=\lambda_{1} v_{1} v_{1}^{\top}+\cdots+\lambda_{n} v_{n} v_{n}^{\top}$ (i.e., weighted sum of dyads)

- Additionally, $V V^{\top}=V^{\top} V=I$
- This factorization property and the fact that S has n orthogonal eigenvectors are two important properties for a symmetric matrix.

Example Problem: Eigenvalues are Real

Problem: Consider a symmetric matrix A. Show that the eigenvalues of A are real.
Solution. Consider $A x=\lambda x$ with $x \neq 0$. Recall that

$$
\langle x, x\rangle=x^{*} x=(\bar{x})^{\top} x
$$

Then,

$$
\lambda\langle x, x\rangle=(\bar{x})^{\top}(\lambda x)=(\bar{x})^{\top} A x=\left(A^{\top} \bar{x}\right)^{\top} x=(A \bar{x})^{\top} x=(\bar{A} \bar{x})^{\top} x=(\bar{\lambda} \bar{x})^{\top} x=\bar{\lambda}\langle x, x\rangle
$$

so that $\lambda=\bar{\lambda}$.

Example Problem: Orthogonality of Eigenvectors

Problem: Consider a symmetric matrix A. Show that eigenvectors corresponding to distinct eigenvalues are orthogonal.
Solution. Indeed consider eigenvalue-eigenvector pair (λ, x) and eigenvalue-eigenvector pair (μ, z) with $\mu \neq \lambda$. Then,

$$
\lambda\langle x, z\rangle=\langle A x, z\rangle=(A x)^{\top} z=x^{\top} A^{\top} z=x^{\top} A z=\mu\langle x, z\rangle \quad \Longrightarrow \quad\langle x, z\rangle=x^{\top} z=0
$$

Matrix powers with eigendecomposition

- Recall from Mod1 we saw many applications with matrix powers such as computing the number of paths of length k in a graph
- For symmetric matrices, computing matrix powers is easy
- Indeed, $A=A^{\top}$ has orthonormal eigendecomposition $A=V \Lambda V^{\top}$ so that

$$
A^{k}=\underbrace{\left(V \Lambda V^{\top}\right) \cdots\left(V \Lambda V^{\top}\right)}_{k \text { times }}=V \Lambda^{k} V^{\top} \quad \text { since } V^{\top} V=I
$$

Positive Definite Matrices

- Another important class of matrices are positive definite matrices
- The matrix A is positive definite if $\langle A x, x\rangle>0$; sometimes we write $A \succ 0$
- And, A is positive semidefinite (PSD) if $\langle A x, x\rangle \geq 0$; sometimes we write $A \succeq 0$
- Positive definite matrices need not be symmetric, but often we are interested in positive definite symmetric matrices
- Eigenvalues: let $\lambda_{1}(A) \geq \cdots \geq \lambda_{n}(A)$ be the order set of eigenvalues of $A=A^{\top}$

$$
\begin{aligned}
& A \succeq 0 \Longleftrightarrow \lambda_{i}(A) \geq 0, \forall i \in\{1, \ldots, n\} \\
& A \succ 0 \Longleftrightarrow \lambda_{i}(A)>0, \forall i \in\{1, \ldots, n\}
\end{aligned}
$$

Example Problem

- Show that $A \succeq 0 \Longleftrightarrow \lambda_{i}(A) \geq 0, \forall i \in\{1, \ldots, n\}$
- solution: A is symmetric and hence it can be diagonalized. Let $A=V \Lambda V^{\top}$ so that

$$
x^{\top} A x=\underbrace{x^{\top} V}_{=: z^{\top}} \Lambda V^{\top}=z^{\top} \Lambda z=\sum_{i=1}^{n} \lambda_{i}(A) z_{i}^{2}
$$

Hence

$$
x^{\top} A x \geq 0 \forall x \in \mathbb{R}^{n} \Longleftrightarrow z^{\top} \Lambda z \geq 0 \forall z \in \mathbb{R}^{n}
$$

And, the right hand side of the equivalence above is itself equivalent to $\lambda_{i}(A) \geq 0$ for all $i \in\{1, \ldots, n\}$

Examples of PSD Matrices from ML and OPT

- Mod2-L4: we often use kernel matrices $K=\left[K\left(x^{(i)}, x^{(j)}\right)\right]$ and these are symmetric and in general PSD
- Mod2-L2: Gram matrices $A^{\top} A$ and $A A^{\top}$ are PSD

Problem: Show that Gram and Kernel matrices are PSD.
solution. Consider the general case of a kernel matrix:
$G_{i j}=K\left(x^{(i)}, x^{(j)}\right)=\left\langle\phi\left(x^{(i)}\right), \phi\left(x^{(j)}\right)\right\rangle$ for i, j. THen for any vector v we have

$$
\begin{aligned}
v^{\top} G v & =\sum_{i=1}^{n} \sum_{j=1}^{n} v_{i} v_{j} G_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} v_{i} v_{j}\left\langle\phi\left(x^{(i)}\right), \phi\left(x^{(j)}\right)\right\rangle \\
& =\left\langle\sum_{i=1}^{n} v_{i} \phi\left(x^{(i)}\right), \sum_{j=1}^{n} v_{j} \phi\left(x^{(j)}\right)\right\rangle=\left\|\sum_{i=1}^{n} v_{i} \phi\left(x^{(i)}\right)\right\|^{2} \geq 0
\end{aligned}
$$

Example Problem

Problem. Show that a matrix A is PSD if and only if $A=B^{\top} B$ for some real matrix B. Solution.
(\Longrightarrow) : Now suppose A is PSD. Let $A V=V \Lambda$ be the eigendecomposition of A and set
$B=\sqrt{\Lambda} V^{\top}$ where $\sqrt{\Lambda}=\operatorname{diag}\left(\sqrt{\lambda}_{1}, \ldots, \sqrt{\lambda}_{n}\right)$. The matrix exists since the eigenvalues are non-negative. Hence

$$
B^{\top} B=V \sqrt{\Lambda} \sqrt{\Lambda} V^{\top}=V \Lambda V^{\top}=A V V^{\top}=A
$$

(\Longleftarrow) : Suppose $A=B^{\top} B$ so that for any vector v we have

$$
v^{\top} A v=v^{\top} B^{\top} B v=\|B v\|^{2} \geq 0 \quad \Longrightarrow \quad A \text { is PSD }
$$

