EE445 Mod3-Lec1: Spectral Properties of Matrices

References:

• [CE-OptMod]: Chapter 3.3, 4, 5

[Lecturer: L.J. Ratliff]

Outline

- 1. Review Eigenvalues & Eigenvectors
- 2. Symmetric Matrices
- 3. Introduction to Singular values and SVD

Why are Spectral Properties Important in ML+OPT?

min
$$\|K_{\alpha} - y\|^2 + \frac{\lambda}{2} \|\alpha\|^2$$

- Computational efficiency
- Analysis 🦟
- Dimensionality reduction
- Numerical stability *E*

How will we see it used?

- 1. Kernel methods
- 2. Principle component analysis (unsupervised ML)
- 3. Principle component regression
- 4. (time permitting) spectral clustering

 $(+\lambda I)$

Reminder: Eigenvalues & Eigenvectors
Some basics: A matrix,
$$A \in [R^{m \times n}]$$

• Def. (Characteristic Polynomial): $p(\lambda) = det(A - \lambda I)$
The roots of $p(\lambda) = 0$ are the eigenvalues of A.
 $y = \begin{bmatrix} y_1 \\ y_1 \end{bmatrix}$, $y^* = \begin{bmatrix} y_1 \\ y_1$

[Lecturer: L.J. Ratliff]

Reminder: Eigenvalues & Eigenvectors

Why important?

- Many ML algorithms involve transforming the matrix A into simpler, or *canonical forms*, from which it is easy to compute its eigenvalues and eigenvectors.
- These transformations are called similarity transformations

- Def. [Similarity Transform]: The matrix A is similar to B if there exists a ann-singular (invertible) matrix S site B=5-145
- **Proposition.** Similar matrices A and B has the same eigenvalues.

- Some special matrices are similar to diagonal matrices—i.e., for some matrices A, there is a similarity transform S such that $\Lambda = S^{-1}AS$ is diagonal, and Λ contains the eigenvalues of A.
- These matrices are called diagonalizable.

[Lecturer: L.J. Ratliff]

Part 2. Special Matrices [Symmetric and Positive (semi) definite]

Symmetric Matrices

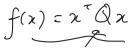
Symmetric Matrix: $A \in [R^{n \times n}]$ is symmetric $(F A = A^T)$

- Symmetric matrices are one of the most important matrices in linear algebra and ML
- Mod2-L4: we often use kernel matrices $K = [K(x^{(i)}, x^{(j)})]$ and these are symmetric—i.e., $K = K^{T}$ —since $K(x^{(i)}, x^{(j)}) = K(x^{(j)}, x^{(i)})$
- Mod2-L2: Gram matrices $A^{\top}A$ and AA^{\top} are symmetric;
 - in fact we can study all kinds of properties of a matrix A such as the range and null spaces using these gram matrices (cf. Finite Rank Operator Lemma)

Symmetric Matrices: Examples The graph Laplacian is a symmetric matrix Lij = { -1, if there is an edge (i,j) Athr wise Sample covariance matrix $\sum_{i} = \frac{1}{m} \sum_{i=1}^{m} (\chi^{(i)} - \bar{\chi}) (\chi^{(i)} - \bar{\chi})^{T} \qquad \bar{\chi} = \frac{1}{m} \sum_{i=1}^{m} \chi^{(i)}$ Hessian of a function: $H = \nabla^2 f(\pi)$ $\chi = \frac{\partial^2}{\partial x_i \partial x_j} f(\pi)$ pod2-L2 $z = (z_1, \dots, z_n), f : (R^n \rightarrow (R$

[Lecturer: L.J. Ratliff]

Quadratic Functions $f(x) = x^{T}Qx$



- Symmetric matrices play an important role not just in ML but also OPT
- We have seen how to formulate least squares regression as a optimization problem with a quadratic objective:

$$f_{1_{\text{LL}}}(\mathbf{x}) = \|Ax - b\|_2^2 = (Ax - b)^\top (Ax - b) \quad \leftarrow \quad$$

• A guadratic function $f: \mathbb{R}^n \to \mathbb{R}$ is a second-order multivariate polynomial in x, that is a function containing a linear combination of all possible monomials of degree at most two—i.e.,

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j + \sum_{i=1}^{n} c_i x_i + d \iff f(x) = x^T A x + c^T x + d$$

$$\int_{1st} (x) = x^{T}Ax - 2b^{T}Ax + b^{T}b$$

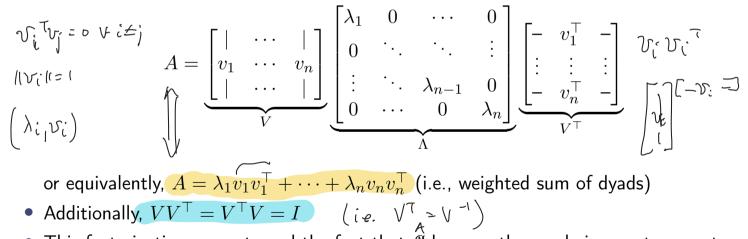
[Lecturer: L.J. Ratliff]

• using properties of symmetric matrices, we can express any quadratic function as a quadratic form.

•
$$f_{Ach}$$
: $x^{T}Ax$ is Scalar =) $x^{T}Ax = x^{T}A^{T}x =$) $x^{T}Ax = \frac{1}{2}x^{T}(A + A^{T})x$
• $A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$
 $sympton$ antisymothic More in Mod4
• Henk, $f(x) = x^{T}Ax + c^{T}x + d = \frac{1}{2}x^{T}Hx + c^{T}x + d$
 $= \frac{1}{2}\begin{bmatrix}x\\1\end{bmatrix}^{T}\begin{bmatrix}H & c\\-T & 2d\end{bmatrix}\begin{bmatrix}x\\1\end{bmatrix}$
[Lecturer: L.J. Ratliff] [EE445 Mod3-L1] A 11

Symmetric Matrices: Eigendecomposition (Spectral Theorem)

• Every symmetric matrix A can be diagonalized as $A = V\Lambda V^{\top}$ with V formed by the orthonormal eigenvectors of A and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ a diagonal matrix of the eigenvalues of A



• This factorization property and the fact that \mathscr{P} has n orthogonal eigenvectors are two **important properties** for a symmetric matrix.

[Lecturer: L.J. Ratliff]

Example Problem: Eigenvalues are Real

Problem: Consider a symmetric matrix A. Show that the eigenvalues of A are real. Solution.

· Consider
$$A_{x=\lambda x}$$
, $x \neq o$. $x \in C^{n} \neq C$
· Consider $A_{x=\lambda x}$, $x \neq o$. $x \in C^{n} \neq C$
· Recall : $\langle x, x \rangle = x^{*} x = (\overline{x})^{T} x$
Complex.

• WTS
$$\lambda = \bar{\lambda}$$
 $z = a + ib$ the $b = 0$
 $\int J = a - ib$

$$\frac{\chi \langle x, \chi \rangle}{A\chi} = (\bar{x})^{7} (\lambda \chi) = (\bar{\chi})^{T} A \pi = (A^{T} \bar{\chi})^{T} \chi = (A \bar{\chi})^{T} \chi = (\bar{\chi} \bar{\chi})^{T} \chi = (\bar{\chi})^{T} \chi = (\bar{\chi}$$

[Lecturer: L.J. Ratliff]

Example Problem: Orthogonality of Eigenvectors

Problem: Consider a symmetric matrix *A*. Show that eigenvectors corresponding to distinct eigenvalues are orthogonal.

Solution.

$$(\lambda_1 z)$$
 eigenpair fir A where $\mu \neq \lambda$
 $(\mu_1 z) - \mu - 4$

$$\lambda(x,z) = \langle A x, z \rangle = (A x)^{2} = \lambda^{T} A^{T} z = \lambda^{T} A z = \mu \langle x, z \rangle$$

Since
$$m \neq \lambda$$
 we have that $(\lambda - \mu) \langle \chi_{12} \rangle = 0 = n_{220}$

[Lecturer: L.J. Ratliff]

Matrix powers with eigendecomposition

- Recall from Mod1 we saw many applications with matrix powers such as computing the number of paths of length k in a graph
- For symmetric matrices, computing matrix powers is easy

$$A = \bigvee \underline{\Lambda} \vee \overline{\nabla} \qquad \forall \nabla \nabla = \mathbf{I}$$

$$A^{k} = (\bigvee \underline{\Lambda} \vee \overline{\nabla})(\nabla \Lambda \vee \overline{\nabla}) - \cdots (\bigvee \underline{\Lambda} \vee \overline{\nabla}) = \bigvee \underline{\Lambda}^{k} \vee \overline{\nabla}$$

$$\underbrace{K + i \leq 1}$$

Positive Definite Matrices

$$\langle A_{x_1} x \rangle = x^{\tau} A^{\tau} x > 0$$

- Another important class of matrices are positive definite matrices
- The matrix A is **positive definite** if $\langle Ax, x \rangle > 0$; sometimes we write $A \succ 0$
- And, A is positive semidefinite (PSD) if $\langle Ax, x \rangle \ge 0$; sometimes we write $A \succeq 0$
- Positive definite matrices need not be symmetric, but often we are interested in positive definite symmetric matrices
- Eigenvalues: let $\lambda_1(A) \geq \cdots \geq \lambda_n(A)$ be the order set of eigenvalues of $A = A^{\top}$

Example Problem

 $A = A^T$

Problem: Show that $A \succeq 0 \iff \lambda_i(A) \ge 0, \forall i \in \{1, \dots, n\}$ Solution.

$$A = A^{T} (=) \quad A = V \land V^{T} (=) \quad \chi^{T} A \chi = \chi^{T} V \land V^{T} \chi = \chi^{T} \land \chi^{T} = \sum_{i=1}^{T} A_{i}^{i}(A) \chi^{2}_{i} (I)$$

[Lecturer: L.J. Ratliff]

Л

Examples of PSD Matrices from ML and OPT

- Mod2-L4: we often use kernel matrices $K = [K(x^{(i)}, x^{(j)})]$ and these are symmetric and in general PSD
- Mod2-L2: Gram matrices $A^{\top}A$ and AA^{\top} are PSD

Problem: Show that Gram and Kernel matrices are PSD. solution.

$$\begin{aligned} & \left[\begin{array}{c} \nabla^{i} \mathcal{G}_{ij} \times \nabla^{i} \right] \right) = \langle \phi(\mathbf{x}^{(i)}), \phi(\mathbf{x}^{(j)}) \rangle \\ & \left[\begin{array}{c} \nabla^{i} \mathcal{G}_{ij} \times \nabla^{i} \right] \right] = \langle \phi(\mathbf{x}^{(i)}), \phi(\mathbf{x}^{(j)}) \rangle \\ & \nabla^{T} \mathcal{G}_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} \nabla_{i} \nabla_{j} \mathcal{G}_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} \nabla_{i} \nabla_{j} \langle \phi(\mathbf{x}^{(i)}), \phi(\mathbf{x}^{(j)}) \rangle \\ & = \left\langle \sum_{i=1}^{n} \nabla_{i} \phi(\mathbf{x}^{(i)}), \sum_{j=1}^{n} \nabla_{j} \phi(\mathbf{x}^{(j)}) \right\rangle = \left[\left\| \sum_{i=1}^{n} \nabla_{i} \phi(\mathbf{x}^{(i)}) \right\|^{2} \right] \right] \end{aligned}$$

[Lecturer: L.J. Ratliff]

$A_{=A^{\tau}}$ Example Problem

Problem. Show that a matrix A is PSD if and only if $A = B^{\top}B$ for some real matrix B. Solution. (a) $(a \Rightarrow b)$: Suppose $A = A^{T}$ is PSD. $A = V \land V^{T} \iff A \lor = \lor \land$ a) Set B:= VA VT where IA = diag (VAI, --. VAn) which exists because di(A) >0 Here B'B = VVAVAV' = VIV' = AVV' = A (b=) a) A=BiB. for any vector V Wis VTAD DD $\nabla^T A v = v^T B^T B v = \langle B v, B v \rangle = || B v ||^2 > 0 \Rightarrow A \circ PSD.$

[Lecturer: L.J. Ratliff]

Part 3. SVD

Overview

- We just talked about special classes of matrices that have a nice decomposition in terms of their eigenvalues—namely, symmetric PSD matrices.
- Now, we will talk about a matrix decomposition that every matrix has—i.e., SVD
- And, it is fundamentally related to a key ML analysis tool: PCA

Matrix Decomposition

- Matrix decomposition, also known as matrix factorization, involves describing a given matrix using its constituent elements.
- Recall that you saw QR decomposition in Module 1 and then its use in Module 2 (e.g., solving least squares, in particular sparse problems)
- Perhaps the most known and widely used matrix decomposition method is the **Singular-Value Decomposition**, or SVD.
- All matrices have an SVD, which makes it more stable than other methods, such as the eigen-decomposition.
- We will see the SVD is useful for computing the pseudoinverse efficiently and for dimensionality reduction

Singular Value Decomposition

What is SVD?

- One can generalize eigenvalues/vectors to non-square matrices, in which case they are called singular vectors and singular values.
- The SVD is a unique matrix decomposition that exists for every matrix $A \in \mathbb{R}^{m \times n}$:

$$A = U \Sigma V^{\top}$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are *unitary* matrices, and $\Sigma \in \mathbb{R}^{m \times n}$ is a matrix with non-negative entries on the diagonal and zeros on the off diagonal.

• Unitary: $UU^{\top} = I$ and $VV^{\top} = I$

SVD as a Dyadic Exampsion

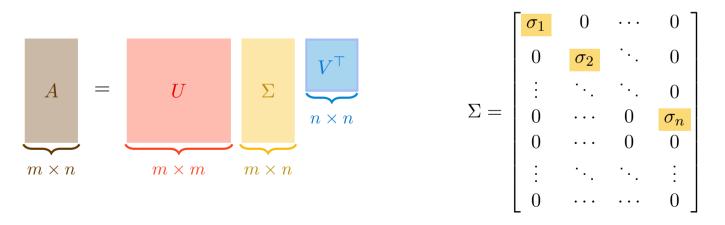
An equivalent way to express the SVD $A = U\Sigma V^{\top}$ is as a dyadic expansion:

- That is, the SVD expresses A as a nonnegative linear combination of $\min\{m,n\}$ rank-1 matrices
- the singular values provide the multipliers
- the outer products of the left and right singular vectors provide the rank-1 matrices.

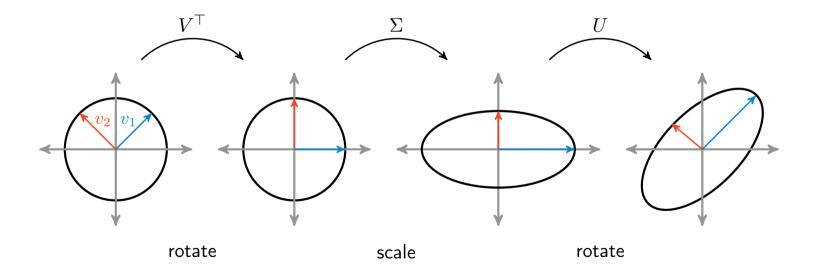
[Lecturer: L.J. Ratliff]

SVD

- The diagonal entries of Σ are called the singular values of A
- The column vectors of V are called the **right singular vectors** of A
- The column vectors of U are called the left singular vectors of A.
- The number of nonzero singular values is equal to the rank of the matrix A.



Geometric View of SVD



Unpacking the SVD

- Let $A \in \mathbb{R}^{m \times n}$
- Fact 1. Both $A^{\top}A \in \mathbb{R}^{n \times n}$ and $AA^{\top} \in \mathbb{R}^{m \times m}$ are symmetric square matrices:

• Fact 2. Both $A^{\top}A$ and AA^{\top} share the same non-zero eigenvalues:

Unpacking the SVD

 According to the othogonally diagonalizable property of symmetric matrices, the matrices A^TA and AA^T can be decomposed as following:

• How to obtain the SVD?: Compute by diagonalizing the PSD symmetric matrices $A^{\top}A$ and AA^{\top}

[Lecturer: L.J. Ratliff]

Using the SVD to Compute Pseudo Inverses

It turns out that using the SVD we have a very easy way to compute the pseudo-inverse of A—i.e., A[†] = (A^TA)⁻¹A^T which we saw in Mod1 & Mod2

Matrix Norms and Connections to Singular values

- Matrix norms and singular values have special relationships.
- Forbenius Norm:

$$|A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2} = (\mathsf{Tr}(A^\top A))^{1/2}$$

• Matrix *p*-norm: matrix *p*-Norm is defined as the largest scalar that you can get for a unit vector

$$||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p} = \max_{||x||_p = 1} ||Ax||_p$$

 \bullet Aside: supremum $\sup(\cdot)$ is the " least upper bound" of its argument

[Lecturer: L.J. Ratliff]

Matrix Norms: Spectral Norm

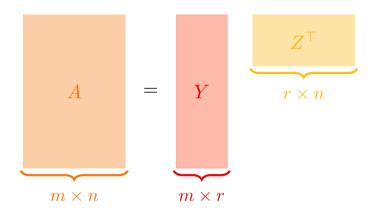
• Spectral Norm (Matrix 2-norm): Largest singular value of the matrix $\sigma_1(A)$

• Fact: show that
$$||A||_F = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2(A)}$$
 using the fact that $||A||_F = \sqrt{\operatorname{Tr}(A^{\top}A)}$
[Lecturer: L.J. Ratliff] [EE445 Mod3-L1] 32

Reduced SVD & Low Rank Approximation

- Rank of Λ is $r \implies$ there are r non-zero eigenvalues of the matrices $A^{\top}A$ and AA^{\top}
- Reduced **SVD**:

Low Rank Structure



Low Rank Structure

$$A = uv^{\top} =$$

$$A = uv^\top + wz^\top =$$

[Lecturer: L.J. Ratliff]

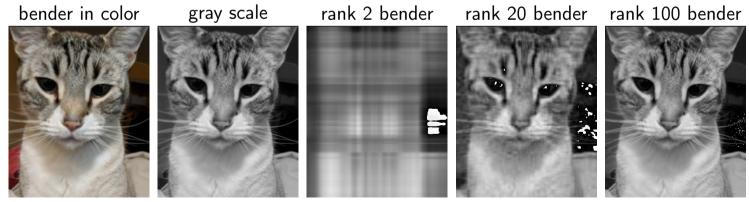
Low Rank Approximation

• Low Rank Approximation: take only top *k*-singular values and corresponding dyads in the dyadic expansion

- Low Rank Approximation is an important tool for many applications including
 - Linear system identification: approximating matrix is Hankel structured. (You saw this in M2-N2.ipynb)
 - ML: feature space dimensionality reduction
 - Recommender systems: matrix completion
 - Distance matrix completion where there is a positive definiteness constraint.
 - ► Natural language processing where the approximation is non-negative.
 - Image or video compression

Example: Compression

- Compression. A low-rank approximation provides a (lossy) compressed version of the data matrix.
 - The original matrix A is described by mn numbers, while describing Y and Z^{\top} requires only k(m+n) numbers.
 - When k is small relative to m and n, replacing the product of m and n by their sum is a big win.
 - With images, a modest value of k (say 100 or 150) is usually enough to achieve approximations that look a lot like the original image.



[Lecturer: L.J. Ratliff]

Optimality of Low Rank Approximation

- The low rank approximation obtained via SVD is optimal in the following sense.
- Recall the Forbenius norm:

- i.e., ℓ_2 -norm (i.e., usual Euclidean norm) applied to the matrix as if it were a vector
- Theorem [Eckat-Young-Mirsky].

How to choose k?

- When producing a low-rank matrix approximation, we have been taking as a parameter the target rank k.
- Ideal Setting: the singular values of A give strong guidance
 - if the top few singular values are big and the rest are small, then the obvious solution is to take k equal to the number of "big values".
- Less Ideal Setting: take k as small as possible subject to obtaining a useful approximation, where what "useful" means depends on the application.
 - e.g., a common rule of thumb is to choose k such that the sum of the top k singular values is at least c times as big as the sum of the other singular values, where c is a domain-dependent constant (like 10, say).

Next Up

• Next lecture we will talk about PCA, and show that PCA reduces to SVD and is fundamentally connected to low rank approximations.