EE445 Mod3-Lec1: Spectral Properties of Matrices

References:

- [CE-OptMod]: Chapter 3.3, 4, 5

Outline

1. Review Eigenvalues \& Eigenvectors
2. Symmetric Matrices
3. Introduction to Singular values and SVD

Why are Spectral Properties Important in ML+OPT?

- Computational efficiency

$$
\min _{\alpha}\|K \alpha-y\|^{2}+\underbrace{\frac{\lambda}{2} \| \alpha} \|^{2}
$$

- Analysis \leftarrow
- Dimensionality reduction

- Numerical stability

Ł
How will we see it used?

1. Kernel methods
[2. Principle component analysis (unsupervised ML)]
2. Principle component regression
3. (time permitting) spectral clustering

Reminder: Eigenvalues \& Eigenvectors
Some basics: A matrix, $A \in \mathbb{R ^ { m \times n }}\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

- Def. (Characteristic Polynomial): $\quad p(\lambda)=\operatorname{det}(A-\lambda I)$

The roots of $p(\lambda)=0$ are the eigenvalues of A.

$$
y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], y^{x}=(\bar{y})^{\tau}
$$

- Def. (Left/Right Eigenvector-value pair):

A nonzero vector, x s.t. $A_{x}=\lambda x$ then (λ, x) is a right eigenvalue-vec

- 1 y sit $y^{*} A=\lambda y^{*}$ then (λ, y) us aleft eigen-pair
- Orthogonality: Let $\left\{x_{1}, \ldots, x_{n}\right\}$ of A
or thogond eigenvectors: $\left\langle x_{i}, x_{j}\right\rangle=x_{i}^{\top} x_{j}=0 \quad \forall i \neq j$
or thonormal eiguec: $\left\langle x_{i,} x_{j}\right\rangle=0 \quad \forall i \neq j!\left\|x_{i}\right\|=1 \quad \forall i$
[EE445 Mod3-L1]

Reminder: Eigenvalues \& Eigenvectors

Why important?

- Many ML algorithms involve transforming the matrix A into simpler, or canonical forms, from which it is easy to compute its eigenvalues and eigenvectors.
- These transformations are called similarity transformations

Similarity transforms S^{*} : Corphex Conjugate transpose

- Def. [Similarity Transform]: The matrix A is simla B if there exist a aon-singula. (invertible) matrix S sit. $B=S^{-1} A S$
- Proposition. Similar matrices A and B has the same eigenvalues.

$$
\begin{aligned}
x \text { is a right eigrec of } 4 & \Longleftrightarrow S^{-1} x \text { is a right eiguec of } B \\
y & \text { is a lett eigver of } A
\end{aligned} S^{*} y \text { is a left eigvec of } B
$$

- Some special matrices are similar to diagonal matrices-i.e., for some matrices A, there is a similarity transform S such that $\Lambda=S^{-1} A S$ is diagonal, and Λ contains the eigenvalues of A.
- These matrices are called diagonalizable.

Part 2. Special Matrices [Symmetric and Positive (semi) definite]

Symmetric Matrices

Symmetric Matrix: $A \in \mathbb{R}^{n \times n}$ is symestric if $A=A^{\top}$

- Symmetric matrices are one of the most important matrices in linear algebra and ML
- Mod2-L4: we often use kernel matrices $K=\left[K\left(x^{(i)}, x^{(j)}\right)\right]$ and these are symmetric-i.e., $K=K^{\top}$-since $K\left(x^{(i)}, x^{(j)}\right)=K\left(x^{(j)}, x^{(i)}\right)$
- Mod2-L2: Gram matrices $A^{\top} A$ and $A A^{\top}$ are symmetric;
- in fact we can study all kinds of properties of a matrix A such as the range and null spaces using these gram matrices (cf. Finite Rank Operator Lemma)

Symmetric Matrices: Examples

The graph Laplacian is a symmetric matrix

$$
L=\left[\begin{array}{llll}
L_{11} & L_{12} & \cdots \\
& - & \\
& & L
\end{array}\right]
$$

$$
L_{i j}= \begin{cases}\text { \# of edges incident to node } i, & \text { if } i=j \\ -1, & \text { it thesis }=1 \text { edge }(i, j) \\ 0 & \text { otherwise }\end{cases}
$$

Sample covariance matrix

$$
\sum_{1}=\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\bar{x}\right)\left(x^{(i)}-\bar{x}\right)^{\top}, \quad \bar{x}=\frac{1}{m} \sum_{i=1}^{n} x^{(i)}
$$

Hessian of a function: $H=\nabla^{2} f(x), \quad H_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x) \quad$ rodz-L2

$$
x=\left(x_{1}, \ldots, x_{n}\right), f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

[Lecturer: L.J. Ratliff]
[EE445 Mod3-L1]

Quadratic Functions $f(x)=x^{\top} Q x$

- Symmetric matrices play an important role not just in ML but also OPT
- We have seen how to formulate least squares regression as a optimization problem with a quadratic objective:

$$
f_{\text {lt }}(x)=\underline{\|A x-b\|_{2}^{2}}=\underline{(A x-b)^{\top}(A x-b)}
$$

- A quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a second-order multivariate polynomial in x, that is a function containing a linear combination of all possible monomials of degree at most two-i.e.,

$$
\begin{aligned}
& {\left[f(x)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}+\sum_{i=1}^{n} c_{i} x_{i}+d \Leftrightarrow f(x)=x^{\top} A x+c^{\top} x+d\right.} \\
& {[f_{\text {lIst }}(x)=x^{\top} A x \underbrace{-2 b^{\top} A_{x}}_{c}+b^{\top} b}
\end{aligned}
$$

$a=a^{\top}$ froscolus

- using properties of symmetric matrices, we can express any quadratic function as a quadratic form.
- Fact: $x^{\top} A x$ is scaler $\Rightarrow x^{\top} A x=x^{\top} A^{\top} x \Rightarrow x^{\top} A x=\frac{1}{2} x^{\top}(\underbrace{\left(A+A^{\top}\right) x}_{=: 1+}$ $=: 1+$

$$
\text { - } 4=\underbrace{\frac{1}{2}\left(A+A^{\top}\right)}_{\text {symarai }}+\underbrace{\frac{1}{2}\left(A-A^{\top}\right)}_{\text {antisyarchic }}
$$

- Hence, $f(x)=x^{\top} 4 x+c^{\top} x+d=\frac{1}{2} x^{\top} H x+c^{\top} x+d$

$$
=\frac{1}{2}\left[\begin{array}{l}
x \\
1
\end{array}\right]^{\top} \underbrace{\left[\begin{array}{ll}
H & c \\
c^{\top} & 2 d
\end{array}\right]}_{Q}\left[\begin{array}{l}
x \\
1
\end{array}\right]
$$

Symmetric Matrices: Eigendecomposition (Spectral Theorem)

- Every symmetric matrix A can be diagonalized as $A=V \Lambda V^{\top}$ with V formed by the orthonormal eigenvectors of A and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ a diagonal matrix of the eigenvalues of A

or equivalently, $A=\lambda_{1} \overparen{v_{1} v_{1}^{\top}}+\cdots+\lambda_{n} v_{n} v_{n}^{\top}$ (i.e., weighted sum of dyads)
- Additionally, $V V^{\top}=V^{\top} V=I$ (ie. $V_{A}^{\top}=V^{-1}$)
- This factorization property and the fact that has n orthogonal eigenvectors are two important properties for a symmetric matrix.

Example Problem: Eigenvalues are Real
Problem: Consider a symmetric matrix A. Show that the eigenvalues of A are real.
Solution.

- Consider $\begin{aligned} & A_{x}=\lambda_{x}\end{aligned}, x \neq 0, x \in \mathbb{C}^{n}, \lambda \in \mathbb{C}\left[\begin{array}{l}\ln \text { general for a matrix } A \\ \text { eigenvalues i vectors can be } \\ \text { Complex. }\end{array}\right]$
- wTs $\begin{aligned} & \lambda=\bar{\lambda} \\ & \lambda=a+i b \text { the } b=0 \\ & \lambda=a-i b\end{aligned}$

$$
\begin{aligned}
& \underbrace{\lambda\langle x, x\rangle}=(\bar{x})^{\top}(\underbrace{\lambda x}_{A x})=(\bar{x})^{\top} A x=\left(A^{\top} \bar{x}\right)^{\top} x=(A \bar{x})^{\top} x=(\bar{x})^{\top} x=\bar{\lambda}\langle x, x\rangle \\
& \Leftrightarrow \lambda=\bar{\lambda} \Leftrightarrow \lambda \in \mathbb{R}, x \in \mathbb{R}^{n}
\end{aligned}
$$

Example Problem: Orthogonality of Eigenvectors
Problem: Consider a symmetric matrix A. Show that eigenvectors corresponding to distinct eigenvalues are orthogonal.
Solution.

$$
\begin{aligned}
& \left(\lambda_{1} x\right) \text { eigenpar fir } A \\
& (\underbrace{}_{\mu, z}-11 \text { where } \mu \neq \lambda \\
& \lambda\langle x, z\rangle=\langle A x, z\rangle=(A x)^{\top} z=x^{\top} A^{\top} z=x^{\top} A z=\mu\langle x, z\rangle
\end{aligned}
$$

since wi f we have that $(\lambda-\mu)\langle x, z\rangle=0 \Rightarrow x^{\top} z=0$

Matrix powers with eigendecomposition

- Recall from Mod we saw many applications with matrix powers such as computing the number of paths of length k in a graph
- For symmetric matrices, computing matrix powers is easy

$$
\begin{aligned}
& A=V \Omega V^{\top}, \quad V^{\top} V=I \\
& A^{k}=\underbrace{\left(V \Omega V^{\top}\right)\left(V \Lambda V^{\top}\right) \cdots\left(V \Lambda V^{\top}\right)}_{k \text { hims }}=V \Omega^{k} V^{\top}
\end{aligned}
$$

Positive Definite Matrices

$$
\left.\langle A x, x\rangle=x^{\top} A^{\top} x\right\rangle 0
$$

- Another important class of matrices are positive definite matrices
$\{$ The matrix A is positive definite if $\langle A x, x\rangle>0$; sometimes we write $A \succ 0$
- And, A is positive semidefinite (PSD) if $\langle A x, x\rangle \geq 0$; sometimes we write $A \succeq 0$
- Positive definite matrices need not be symmetric, but often we are interested in positive definite symmetric matrices
- Eigenvalues: let $\lambda_{1}(A) \geq \cdots \geq \lambda_{n}(A)$ be the order set of eigenvalues of $A=A^{\top}$

$$
\begin{aligned}
& \text { fix) } \quad[P S D] \widehat{A \succeq 0 \Longleftrightarrow \lambda_{i}(A) \geq 0}, \forall i \in\{1, \ldots, n\} \\
& \frac{d}{d x} f\left(x^{0}\right)=0, \frac{d^{2}}{d x^{2}} f\left(x^{0}\right)>0[P D] \quad A \succeq 0 \Longleftrightarrow \lambda_{i}(A)>0, \forall i \in\{1, \ldots, n\} \\
& H=\nabla^{2} f(2), \quad \nabla f\left(x^{*}\right)=0 \text {; eigenuases of } H \text { position } \Longleftrightarrow H>0
\end{aligned}
$$

$$
A=A^{\top}
$$

Example Problem
Problem: Show that $A \succeq 0 \Longleftrightarrow \lambda_{i}(A) \geq 0, \forall i \in\{1, \ldots, n\}$
Solution.

$$
\Rightarrow
$$

due to (1)

$$
\begin{aligned}
& A=A^{\top} \Leftrightarrow A=V \Lambda V^{\top} \Leftrightarrow x^{\top} A x=\underbrace{x^{\top} V \Lambda V^{\top} x=\underbrace{z^{\top} \Lambda z}=\sum_{i=1}^{n} \lambda_{i}(4) z_{i}^{2}(1), ~(1)}_{=: z^{\top}} \\
& \Leftrightarrow \underbrace{\left[x^{\top} A x \geqslant 0 \quad \forall x \in \mathbb{R}^{n}\right.} \Leftrightarrow \underbrace{\left.z^{\top} \leq \Lambda z \geqslant 0 \quad \forall z \in \mathbb{R}^{n}\right]}_{\Uparrow} \\
& \lambda_{i}(A) \geqslant 0 \quad \forall i \in[1, \ldots, n]
\end{aligned}
$$

Examples of PSD Matrices from ML and OPT

- Mod2-L4: we often use kernel matrices $K=\left[K\left(x^{(i)}, x^{(j)}\right)\right]$ and these are symmetric and in general PSD
- Mod2-L2: Gram matrices $A^{\top} A$ and $A A^{\top}$ are PSD

Problem: Show that Gram and Kernel matrices are PSD.

$$
\begin{aligned}
& \text { solution. } \quad \begin{aligned}
G_{i j} & =K\left(x^{(i)}, x^{(j)}\right)=\left\langle\phi\left(x^{(i)}\right), \phi\left(x^{(j)}\right)\right\rangle \quad \\
v^{\top} G v & =\sum_{i=1}^{n} \sum_{j=1}^{n} v_{i} v_{j} G_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} v_{i} v_{j}\left\langle\phi\left(x^{(i)}\right), \phi\left(x^{(j)}\right)\right\rangle \\
& =\left\langle\sum_{i=1}^{n} v_{i} \phi\left(x^{(i)}\right) \mid \sum_{j=1}^{n} v_{j} \phi\left(x^{(j)}\right)\right\rangle=\left\|\sum_{i=1}^{n} v_{i} \phi\left(x^{(i)}\right)\right\|^{2} \geqslant 0
\end{aligned}
\end{aligned}
$$

$A=a^{\top} \quad$ Example Problem
Problem. Show that a matrix A is PSD if and only if $A=B^{\top} B$ for some real matrix B. Solution.
$(a \Rightarrow b)$: Suppose $A=A^{\top}$ is $P S D . \quad A=V \Lambda V^{\top} \Leftrightarrow \quad A V=V \Lambda$
Set $B:=\sqrt{\underline{\Omega} V^{\top}}$ where $\sqrt{\Omega}=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots \sqrt{\lambda_{n}}\right)$
which exists because $\lambda_{i}(a) \geqslant 0$
Hence $B^{\top} B=V \sqrt{\underline{I}} \sqrt{\Delta} V^{\top}=V \underline{\Lambda} V^{\top}=A \underbrace{V V^{\top}}_{=I}=A$
$(b \Rightarrow a) \quad A=B^{T} B$. fir any vector v wis $V^{\top} A v \geqslant 0$

$$
v^{\top} A v=v^{\top} B^{\top} B v=\langle B v, B v\rangle=\|B v\|^{2} \geqslant 0 \Rightarrow A \text { is PSD. }
$$

Part 3. SVD

Overview

- We just talked about special classes of matrices that have a nice decomposition in terms of their eigenvalues-namely, symmetric PSD matrices.
- Now, we will talk about a matrix decomposition that every matrix has-i.e., SVD
- And, it is fundamentally related to a key ML analysis tool: PCA

Matrix Decomposition

- Matrix decomposition, also known as matrix factorization, involves describing a given matrix using its constituent elements.
- Recall that you saw QR decomposition in Module 1 and then its use in Module 2 (e.g., solving least squares, in particular sparse problems)
- Perhaps the most known and widely used matrix decomposition method is the Singular-Value Decomposition, or SVD.
- All matrices have an SVD, which makes it more stable than other methods, such as the eigen-decomposition.
- We will see the SVD is useful for computing the pseudoinverse efficiently and for dimensionality reduction

Singular Value Decomposition

What is SVD?

- One can generalize eigenvalues/vectors to non-square matrices, in which case they are called singular vectors and singular values.
- The SVD is a unique matrix decomposition that exists for every matrix $A \in \mathbb{R}^{m \times n}$:

$$
A=U \Sigma V^{\top}
$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are unitary matrices, and $\Sigma \in \mathbb{R}^{m \times n}$ is a matrix with non-negative entries on the diagonal and zeros on the off diagonal.

- Unitary: $U U^{\top}=I$ and $V V^{\top}=I$

SVD as a Dyadic Exanpsion

An equivalent way to express the $\operatorname{SVD} A=U \Sigma V^{\top}$ is as a dyadic expansion:

- That is, the SVD expresses A as a nonnegative linear combination of $\min \{m, n\}$ rank-1 matrices
- the singular values provide the multipliers
- the outer products of the left and right singular vectors provide the rank-1 matrices.

SVD

- The diagonal entries of Σ are called the singular values of A
- The column vectors of V are called the right singular vectors of A
- The column vectors of U are called the left singular vectors of A.
- The number of nonzero singular values is equal to the rank of the matrix A.

Geometric View of SVD

Unpacking the SVD

- Let $A \in \mathbb{R}^{m \times n}$
- Fact 1. Both $A^{\top} A \in \mathbb{R}^{n \times n}$ and $A A^{\top} \in \mathbb{R}^{m \times m}$ are symmetric square matrices:
- Fact 2. Both $A^{\top} A$ and $A A^{\top}$ share the same non-zero eigenvalues:

Unpacking the SVD

- According to the othogonally diagonalizable property of symmetric matrices, the matrices $A^{\top} A$ and $A A^{\top}$ can be decomposed as following:
- How to obtain the SVD?: Compute by diagonalizing the PSD symmetric matrices $A^{\top} A$ and $A A^{\top}$

Using the SVD to Compute Pseudo Inverses

- It turns out that using the SVD we have a very easy way to compute the pseudo-inverse of A-i.e., $A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top}$ which we saw in Mod1 \& Mod2

Matrix Norms and Connections to Singular values

- Matrix norms and singular values have special relationships.
- Forbenius Norm:

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}=\left(\operatorname{Tr}\left(A^{\top} A\right)\right)^{1 / 2}
$$

- Matrix p-norm: matrix p-Norm is defined as the largest scalar that you can get for a unit vector

$$
\|A\|_{p}=\sup _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}=\max _{\|x\|_{p}=1}\|A x\|_{p}
$$

- Aside: supremum $\sup (\cdot)$ is the " least upper bound" of its argument

Matrix Norms: Spectral Norm

- Spectral Norm (Matrix 2-norm): Largest singular value of the matrix $\sigma_{1}(A)$
- Fact: show that $\|A\|_{F}=\sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}(A)}$ using the fact that $\|A\|_{F}=\sqrt{\operatorname{Tr}\left(A^{\top} A\right)}$

Reduced SVD \& Low Rank Approximation

- Rank of Λ is $r \Longrightarrow$ there are r non-zero eigenvalues of the matrices $A^{\top} A$ and $A A^{\top}$
- Reduced SVD:

Low Rank Structure

Low Rank Structure

$$
A=u v^{\top}=
$$

$$
A=u v^{\top}+w z^{\top}=
$$

Low Rank Approximation

- Low Rank Approximation: take only top k-singular values and corresponding dyads in the dyadic expansion
- Low Rank Approximation is an important tool for many applications including
- Linear system identification: approximating matrix is Hankel structured. (You saw this in M2-N2.ipynb)
- ML: feature space dimensionality reduction
- Recommender systems: matrix completion
- Distance matrix completion where there is a positive definiteness constraint.
- Natural language processing where the approximation is non-negative.
- Image or video compression

Example: Compression

- Compression. A low-rank approximation provides a (lossy) compressed version of the data matrix.
- The original matrix A is described by $m n$ numbers, while describing Y and Z^{\top} requires only $k(m+n)$ numbers.
- When k is small relative to m and n, replacing the product of m and n by their sum is a big win.
- With images, a modest value of k (say 100 or 150) is usually enough to achieve approximations that look a lot like the original image.

Optimality of Low Rank Approximation

- The low rank approximation obtained via SVD is optimal in the following sense.
- Recall the Forbenius norm:
- i.e., ℓ_{2}-norm (i.e., usual Euclidean norm) applied to the matrix as if it were a vector
- Theorem [Eckat-Young-Mirsky].

How to choose k ?

- When producing a low-rank matrix approximation, we have been taking as a parameter the target rank k.
- Ideal Setting: the singular values of A give strong guidance
- if the top few singular values are big and the rest are small, then the obvious solution is to take k equal to the number of "big values".
- Less Ideal Setting: take k as small as possible subject to obtaining a useful approximation, where what "useful" means depends on the application.
- e.g., a common rule of thumb is to choose k such that the sum of the top k singular values is at least c times as big as the sum of the other singular values, where c is a domain-dependent constant (like 10, say).

Next Up

- Next lecture we will talk about PCA, and show that PCA reduces to SVD and is fundamentally connected to low rank approximations.

