
EE445 Mod3-Lec1: Spectral Properties of Matrices

References:
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Outline

1. Review Eigenvalues & Eigenvectors
2. Symmetric Matrices
3. Introduction to Singular values and SVD
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Why are Spectral Properties Important in ML+OPT?

• Computational efficiency
• Analysis
• Dimensionality reduction
• Numerical stability

How will we see it used?
1. Kernel methods
2. Principle component analysis (unsupervised ML)
3. Principle component regression
4. (time permitting) spectral clustering

[Lecturer: L.J. Ratliff] [EE445 Mod3-L1] 3



Reminder: Eigenvalues & Eigenvectors
Some basics:
• Def. (Characteristic Polynomial):

• Def. (Left/Right Eigenvector-value pair):

• Orthogonality:
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Reminder: Eigenvalues & Eigenvectors

Why important?
• Many ML algorithms involve transforming the matrix A into simpler, or canonical

forms, from which it is easy to compute its eigenvalues and eigenvectors.
• These transformations are called similarity transformations
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Similarity transforms

• Def. [Similarity Transform]:

• Proposition. Similar matrices A and B has the same eigenvalues.

• Some special matrices are similar to diagonal matrices—i.e., for some matrices A, there
is a similarity transform S such that Λ = S−1AS is diagonal, and Λ contains the
eigenvalues of A.

• These matrices are called diagonalizable.

[Lecturer: L.J. Ratliff] [EE445 Mod3-L1] 6



Part 2. Special Matrices [Symmetric and Positive (semi) definite]
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Symmetric Matrices

Symmetric Matrix:

• Symmetric matrices are one of the most important matrices in linear algebra and ML
• Mod2-L4: we often use kernel matrices K = [K(x(i), x(j))] and these are

symmetric—i.e., K = K⊤—since K(x(i), x(j)) = K(x(j), x(i))

• Mod2-L2: Gram matrices A⊤A and AA⊤ are symmetric;
▶ in fact we can study all kinds of properties of a matrix A such as the range and null

spaces using these gram matrices (cf. Finite Rank Operator Lemma)
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Symmetric Matrices: Examples

The graph Laplacian is a symmetric matrix

Sample covariance matrix

Hessian of a function:
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Quadratic Functions
• Symmetric matrices play an important role not just in ML but also OPT
• We have seen how to formulate least squares regression as a optimization problem with

a quadratic objective:

∥Ax− b∥22 = (Ax− b)⊤(Ax− b)

• A quadratic function f : Rn → R is a second-order multivariate polynomial in x, that is
a function containing a linear combination of all possible monomials of degree at most
two—i.e.,
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Quadratic Functions
• using properties of symmetric matrices, we can express any quadratic function as a

quadratic form.
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Symmetric Matrices: Eigendecomposition (Spectral Theorem)

• Every symmetric matrix A can be diagonalized as A = V ΛV ⊤ with V formed by the
orthonormal eigenvectors of A and Λ = diag(λ1, . . . , λn) a diagonal matrix of the
eigenvalues of A

A =

 | · · · |
v1 · · · vn
| · · · |


︸ ︷︷ ︸

V


λ1 0 · · · 0

0
. . . . . .

...
...

. . . λn−1 0
0 · · · 0 λn


︸ ︷︷ ︸

Λ

– v⊤1 –
...

...
...

– v⊤n –


︸ ︷︷ ︸

V ⊤

or equivalently, A = λ1v1v
⊤
1 + · · ·+ λnvnv

⊤
n (i.e., weighted sum of dyads)

• Additionally, V V ⊤ = V ⊤V = I

• This factorization property and the fact that S has n orthogonal eigenvectors are two
important properties for a symmetric matrix.
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Example Problem: Eigenvalues are Real
Problem: Consider a symmetric matrix A. Show that the eigenvalues of A are real.
Solution.
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Example Problem: Orthogonality of Eigenvectors
Problem: Consider a symmetric matrix A. Show that eigenvectors corresponding to distinct
eigenvalues are orthogonal.
Solution.
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Matrix powers with eigendecomposition
• Recall from Mod1 we saw many applications with matrix powers such as computing

the number of paths of length k in a graph
• For symmetric matrices, computing matrix powers is easy
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Positive Definite Matrices

• Another important class of matrices are positive definite matrices
• The matrix A is positive definite if ⟨Ax, x ⟩ > 0; sometimes we write A ≻ 0

• And, A is positive semidefinite (PSD) if ⟨Ax, x ⟩ ≥ 0; sometimes we write A ⪰ 0

• Positive definite matrices need not be symmetric, but often we are interested in positive
definite symmetric matrices

• Eigenvalues: let λ1(A) ≥ · · · ≥ λn(A) be the order set of eigenvalues of A = A⊤

A ⪰ 0 ⇐⇒ λi(A) ≥ 0, ∀i ∈ {1, . . . , n}

A ≻ 0 ⇐⇒ λi(A) > 0, ∀i ∈ {1, . . . , n}
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Example Problem
Problem: Show that A ⪰ 0 ⇐⇒ λi(A) ≥ 0, ∀i ∈ {1, . . . , n}
Solution.
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Examples of PSD Matrices from ML and OPT
• Mod2-L4: we often use kernel matrices K = [K(x(i), x(j))] and these are symmetric

and in general PSD
• Mod2-L2: Gram matrices A⊤A and AA⊤ are PSD

Problem: Show that Gram and Kernel matrices are PSD.
solution.
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Example Problem
Problem. Show that a matrix A is PSD if and only if A = B⊤B for some real matrix B.
Solution.
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Part 3. SVD
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Overview

• We just talked about special classes of matrices that have a nice decomposition in
terms of their eigenvalues—namely, symmetric PSD matrices.

• Now, we will talk about a matrix decomposition that every matrix has—i.e., SVD
• And, it is fundamentally related to a key ML analysis tool: PCA
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Matrix Decomposition

• Matrix decomposition, also known as matrix factorization, involves describing a given
matrix using its constituent elements.

• Recall that you saw QR decomposition in Module 1 and then its use in Module 2
(e.g., solving least squares, in particular sparse problems)

• Perhaps the most known and widely used matrix decomposition method is the
Singular-Value Decomposition, or SVD.

• All matrices have an SVD, which makes it more stable than other methods, such as the
eigen-decomposition.

• We will see the SVD is useful for computing the pseudoinverse efficiently and for
dimensionality reduction
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Singular Value Decomposition
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What is SVD?

• One can generalize eigenvalues/vectors to non-square matrices, in which case they are
called singular vectors and singular values.

• The SVD is a unique matrix decomposition that exists for every matrix A ∈ Rm×n:

A = UΣV ⊤

where U ∈ Rm×m and V ∈ Rn×n are unitary matrices, and Σ ∈ Rm×n is a matrix with
non-negative entries on the diagonal and zeros on the off diagonal.

• Unitary: UU⊤ = I and V V ⊤ = I
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SVD as a Dyadic Exanpsion

An equivalent way to express the SVD A = UΣV ⊤ is as a dyadic expansion:

• That is, the SVD expresses A as a nonnegative linear combination of min{m,n} rank-1
matrices

• the singular values provide the multipliers
• the outer products of the left and right singular vectors provide the rank-1 matrices.
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SVD

• The diagonal entries of Σ are called the singular values of A
• The column vectors of V are called the right singular vectors of A
• The column vectors of U are called the left singular vectors of A.
• The number of nonzero singular values is equal to the rank of the matrix A.

=

m× n

A

m×m

U

m× n

Σ

n× n

V ⊤

Σ =



σ1 0 · · · 0

0 σ2
. . . 0

...
. . . . . . 0

0 · · · 0 σn
0 · · · 0 0
...

. . . . . .
...

0 · · · · · · 0
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Geometric View of SVD

v1v2

ΣV ⊤ U

rotate rotatescale
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Unpacking the SVD

• Let A ∈ Rm×n

• Fact 1. Both A⊤A ∈ Rn×n and AA⊤ ∈ Rm×m are symmetric square matrices:

• Fact 2. Both A⊤A and AA⊤ share the same non-zero eigenvalues:
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Unpacking the SVD

• According to the othogonally diagonalizable property of symmetric matrices, the
matrices A⊤A and AA⊤ can be decomposed as following:

• How to obtain the SVD?: Compute by diagonalizing the PSD symmetric matrices
A⊤A and AA⊤

[Lecturer: L.J. Ratliff] [EE445 Mod3-L1] 29



Using the SVD to Compute Pseudo Inverses
• It turns out that using the SVD we have a very easy way to compute the pseudo-inverse

of A—i.e., A† = (A⊤A)−1A⊤ which we saw in Mod1 & Mod2
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Matrix Norms and Connections to Singular values

• Matrix norms and singular values have special relationships.
• Forbenius Norm:

∥A∥F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

= (Tr(A⊤A))1/2

• Matrix p-norm: matrix p-Norm is defined as the largest scalar that you can get for a
unit vector

∥A∥p = sup
x ̸=0

∥Ax∥p
∥x∥p

= max
∥x∥p=1

∥Ax∥p

• Aside: supremum sup(·) is the “ least upper bound" of its argument
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Matrix Norms: Spectral Norm
• Spectral Norm (Matrix 2-norm): Largest singular value of the matrix σ1(A)

• Fact: show that ∥A∥F =

√∑min{m,n}
i=1 σ2

i (A) using the fact that ∥A∥F =
√

Tr(A⊤A)
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Reduced SVD & Low Rank Approximation
• Rank of Λ is r =⇒ there are r non-zero eigenvalues of the matrices A⊤A and AA⊤

• Reduced SVD:
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Low Rank Structure

A = Y

m× n m× r

Z⊤

r × n
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Low Rank Structure

A = uv⊤ =

A = uv⊤ + wz⊤ =
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Low Rank Approximation

• Low Rank Approximation: take only top k-singular values and corresponding dyads in
the dyadic expansion

• Low Rank Approximation is an important tool for many applications including
▶ Linear system identification: approximating matrix is Hankel structured. (You saw this in

M2-N2.ipynb)
▶ ML: feature space dimensionality reduction
▶ Recommender systems: matrix completion
▶ Distance matrix completion where there is a positive definiteness constraint.
▶ Natural language processing where the approximation is non-negative.
▶ Image or video compression
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Example: Compression
• Compression. A low-rank approximation provides a (lossy) compressed version of the

data matrix.
▶ The original matrix A is described by mn numbers, while describing Y and Z⊤ requires

only k(m+ n) numbers.
▶ When k is small relative to m and n, replacing the product of m and n by their sum is a

big win.
▶ With images, a modest value of k (say 100 or 150) is usually enough to achieve

approximations that look a lot like the original image.

bender in color gray scale rank 2 bender rank 20 bender rank 100 bender
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Optimality of Low Rank Approximation
• The low rank approximation obtained via SVD is optimal in the following sense.
• Recall the Forbenius norm:

• i.e., ℓ2-norm (i.e., usual Euclidean norm) applied to the matrix as if it were a vector
• Theorem [Eckat-Young-Mirsky].
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How to choose k?

• When producing a low-rank matrix approximation, we have been taking as a parameter
the target rank k.

• Ideal Setting: the singular values of A give strong guidance
▶ if the top few singular values are big and the rest are small, then the obvious solution is

to take k equal to the number of “big values".
• Less Ideal Setting: take k as small as possible subject to obtaining a useful

approximation, where what “useful" means depends on the application.
▶ e.g., a common rule of thumb is to choose k such that the sum of the top k singular

values is at least c times as big as the sum of the other singular values, where c is a
domain-dependent constant (like 10, say).
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Next Up

• Next lecture we will talk about PCA, and show that PCA reduces to SVD and is
fundamentally connected to low rank approximations.
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