EE445 Mod3-Lec1: Spectral Properties of Matrices

References:

- [CE-OptMod]: Chapter 3.3, 4, 5

Outline

1. Review Eigenvalues \& Eigenvectors
2. Symmetric Matrices
3. Introduction to Singular values and SVD

Why are Spectral Properties Important in ML+OPT?

- Computational efficiency
- Analysis
- Dimensionality reduction
- Numerical stability

How will we see it used?

1. Kernel methods
2. Principle component analysis (unsupervised ML)
3. Principle component regression
4. (time permitting) spectral clustering

Reminder: Eigenvalues \& Eigenvectors

Some basics:

- Def. (Characteristic Polynomial):
- Def. (Left/Right Eigenvector-value pair):
- Orthogonality:

Reminder: Eigenvalues \& Eigenvectors

Why important?

- Many ML algorithms involve transforming the matrix A into simpler, or canonical forms, from which it is easy to compute its eigenvalues and eigenvectors.
- These transformations are called similarity transformations

Similarity transforms

- Def. [Similarity Transform]:
- Proposition. Similar matrices A and B has the same eigenvalues.
- Some special matrices are similar to diagonal matrices-i.e., for some matrices A, there is a similarity transform S such that $\Lambda=S^{-1} A S$ is diagonal, and Λ contains the eigenvalues of A.
- These matrices are called diagonalizable.

Part 2. Special Matrices [Symmetric and Positive (semi) definite]

Symmetric Matrices

Symmetric Matrix:

- Symmetric matrices are one of the most important matrices in linear algebra and ML
- Mod2-L4: we often use kernel matrices $K=\left[K\left(x^{(i)}, x^{(j)}\right)\right]$ and these are symmetric—i.e., $K=K^{\top}$-since $K\left(x^{(i)}, x^{(j)}\right)=K\left(x^{(j)}, x^{(i)}\right)$
- Mod2-L2: Gram matrices $A^{\top} A$ and $A A^{\top}$ are symmetric;
- in fact we can study all kinds of properties of a matrix A such as the range and null spaces using these gram matrices (cf. Finite Rank Operator Lemma)

Symmetric Matrices: Examples

The graph Laplacian is a symmetric matrix

Sample covariance matrix

Hessian of a function:

Quadratic Functions

- Symmetric matrices play an important role not just in ML but also OPT
- We have seen how to formulate least squares regression as a optimization problem with a quadratic objective:

$$
\|A x-b\|_{2}^{2}=(A x-b)^{\top}(A x-b)
$$

- A quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a second-order multivariate polynomial in x, that is a function containing a linear combination of all possible monomials of degree at most two-i.e.,

Quadratic Functions

- using properties of symmetric matrices, we can express any quadratic function as a quadratic form.

Symmetric Matrices: Eigendecomposition (Spectral Theorem)

- Every symmetric matrix A can be diagonalized as $A=V \Lambda V^{\top}$ with V formed by the orthonormal eigenvectors of A and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ a diagonal matrix of the eigenvalues of A

$$
A=\underbrace{\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & \cdots & \mid
\end{array}\right]}_{V} \underbrace{\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \lambda_{n-1} & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{ccc}
- & v_{1}^{\top} & - \\
\vdots & \vdots & \vdots \\
- & v_{n}^{\top} & -
\end{array}\right]}_{V^{\top}}
$$

or equivalently, $A=\lambda_{1} v_{1} v_{1}^{\top}+\cdots+\lambda_{n} v_{n} v_{n}^{\top}$ (i.e., weighted sum of dyads)

- Additionally, $V V^{\top}=V^{\top} V=I$
- This factorization property and the fact that S has n orthogonal eigenvectors are two important properties for a symmetric matrix.

Example Problem: Eigenvalues are Real

Problem: Consider a symmetric matrix A. Show that the eigenvalues of A are real. Solution.

Example Problem: Orthogonality of Eigenvectors

Problem: Consider a symmetric matrix A. Show that eigenvectors corresponding to distinct eigenvalues are orthogonal.

Solution.

Matrix powers with eigendecomposition

- Recall from Mod1 we saw many applications with matrix powers such as computing the number of paths of length k in a graph
- For symmetric matrices, computing matrix powers is easy

Positive Definite Matrices

- Another important class of matrices are positive definite matrices
- The matrix A is positive definite if $\langle A x, x\rangle>0$; sometimes we write $A \succ 0$
- And, A is positive semidefinite (PSD) if $\langle A x, x\rangle \geq 0$; sometimes we write $A \succeq 0$
- Positive definite matrices need not be symmetric, but often we are interested in positive definite symmetric matrices
- Eigenvalues: let $\lambda_{1}(A) \geq \cdots \geq \lambda_{n}(A)$ be the order set of eigenvalues of $A=A^{\top}$

$$
\begin{aligned}
& A \succeq 0 \Longleftrightarrow \lambda_{i}(A) \geq 0, \forall i \in\{1, \ldots, n\} \\
& A \succ 0 \Longleftrightarrow \lambda_{i}(A)>0, \forall i \in\{1, \ldots, n\}
\end{aligned}
$$

Example Problem

Problem: Show that $A \succeq 0 \Longleftrightarrow \lambda_{i}(A) \geq 0, \forall i \in\{1, \ldots, n\}$ Solution.

Examples of PSD Matrices from ML and OPT

- Mod2-L4: we often use kernel matrices $K=\left[K\left(x^{(i)}, x^{(j)}\right)\right]$ and these are symmetric and in general PSD
- Mod2-L2: Gram matrices $A^{\top} A$ and $A A^{\top}$ are PSD

Problem: Show that Gram and Kernel matrices are PSD. solution.

Example Problem

Problem. Show that a matrix A is PSD if and only if $A=B^{\top} B$ for some real matrix B. Solution.

Part 3. SVD

Overview

- We just talked about special classes of matrices that have a nice decomposition in terms of their eigenvalues-namely, symmetric PSD matrices.
- Now, we will talk about a matrix decomposition that every matrix has-i.e., SVD
- And, it is fundamentally related to a key ML analysis tool: PCA

Matrix Decomposition

- Matrix decomposition, also known as matrix factorization, involves describing a given matrix using its constituent elements.
- Recall that you saw QR decomposition in Module 1 and then its use in Module 2 (e.g., solving least squares, in particular sparse problems)
- Perhaps the most known and widely used matrix decomposition method is the Singular-Value Decomposition, or SVD.
- All matrices have an SVD, which makes it more stable than other methods, such as the eigen-decomposition.
- We will see the SVD is useful for computing the pseudoinverse efficiently and for dimensionality reduction

Singular Value Decomposition

What is SVD?

- One can generalize eigenvalues/vectors to non-square matrices, in which case they are called singular vectors and singular values.
- The SVD is a unique matrix decomposition that exists for every matrix $A \in \mathbb{R}^{m \times n}$:

$$
A=U \Sigma V^{\top}
$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are unitary matrices, and $\Sigma \in \mathbb{R}^{m \times n}$ is a matrix with non-negative entries on the diagonal and zeros on the off diagonal.

- Unitary: $U U^{\top}=I$ and $V V^{\top}=I$

SVD as a Dyadic Exanpsion

An equivalent way to express the SVD $A=U \Sigma V^{\top}$ is as a dyadic expansion:

- That is, the SVD expresses A as a nonnegative linear combination of $\min \{m, n\}$ rank-1 matrices
- the singular values provide the multipliers
- the outer products of the left and right singular vectors provide the rank-1 matrices.

SVD

- The diagonal entries of Σ are called the singular values of A
- The column vectors of V are called the right singular vectors of A
- The column vectors of U are called the left singular vectors of A.
- The number of nonzero singular values is equal to the rank of the matrix A.

Geometric View of SVD

Unpacking the SVD

- Let $A \in \mathbb{R}^{m \times n}$
- Fact 1. Both $A^{\top} A \in \mathbb{R}^{n \times n}$ and $A A^{\top} \in \mathbb{R}^{m \times m}$ are symmetric square matrices:
- Fact 2. Both $A^{\top} A$ and $A A^{\top}$ share the same non-zero eigenvalues:

Unpacking the SVD

- According to the othogonally diagonalizable property of symmetric matrices, the matrices $A^{\top} A$ and $A A^{\top}$ can be decomposed as following:
- How to obtain the SVD?: Compute by diagonalizing the PSD symmetric matrices $A^{\top} A$ and $A A^{\top}$

Using the SVD to Compute Pseudo Inverses

- It turns out that using the SVD we have a very easy way to compute the pseudo-inverse of A-i.e., $A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top}$ which we saw in Mod1 \& Mod2

Matrix Norms and Connections to Singular values

- Matrix norms and singular values have special relationships.
- Forbenius Norm:

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}=\left(\operatorname{Tr}\left(A^{\top} A\right)\right)^{1 / 2}
$$

- Matrix p-norm: matrix p-Norm is defined as the largest scalar that you can get for a unit vector

$$
\|A\|_{p}=\sup _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}=\max _{\|x\|_{p}=1}\|A x\|_{p}
$$

- Aside: supremum $\sup (\cdot)$ is the " least upper bound" of its argument

Matrix Norms: Spectral Norm

- Spectral Norm (Matrix 2-norm): Largest singular value of the matrix $\sigma_{1}(A)$
- Fact: show that $\|A\|_{F}=\sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}(A)}$ using the fact that $\|A\|_{F}=\sqrt{\operatorname{Tr}\left(A^{\top} A\right)}$

Reduced SVD \& Low Rank Approximation

- Rank of Λ is $r \Longrightarrow$ there are r non-zero eigenvalues of the matrices $A^{\top} A$ and $A A^{\top}$
- Reduced SVD:

Low Rank Structure

Low Rank Structure

$$
A=u v^{\top}=
$$

$$
A=u v^{\top}+w z^{\top}=
$$

Low Rank Approximation

- Low Rank Approximation: take only top k-singular values and corresponding dyads in the dyadic expansion
- Low Rank Approximation is an important tool for many applications including
- Linear system identification: approximating matrix is Hankel structured. (You saw this in M2-N2. ipynb)
- ML: feature space dimensionality reduction
- Recommender systems: matrix completion
- Distance matrix completion where there is a positive definiteness constraint.
- Natural language processing where the approximation is non-negative.
- Image or video compression

Example: Compression

- Compression. A low-rank approximation provides a (lossy) compressed version of the data matrix.
- The original matrix A is described by $m n$ numbers, while describing Y and Z^{\top} requires only $k(m+n)$ numbers.
- When k is small relative to m and n, replacing the product of m and n by their sum is a big win.
- With images, a modest value of k (say 100 or 150) is usually enough to achieve approximations that look a lot like the original image.

Optimality of Low Rank Approximation

- The low rank approximation obtained via SVD is optimal in the following sense.
- Recall the Forbenius norm:
- i.e., ℓ_{2}-norm (i.e., usual Euclidean norm) applied to the matrix as if it were a vector
- Theorem [Eckat-Young-Mirsky].

How to choose k ?

- When producing a low-rank matrix approximation, we have been taking as a parameter the target rank k.
- Ideal Setting: the singular values of A give strong guidance
- if the top few singular values are big and the rest are small, then the obvious solution is to take k equal to the number of "big values".
- Less Ideal Setting: take k as small as possible subject to obtaining a useful approximation, where what "useful" means depends on the application.
- e.g., a common rule of thumb is to choose k such that the sum of the top k singular values is at least c times as big as the sum of the other singular values, where c is a domain-dependent constant (like 10, say).

Next Up

- Next lecture we will talk about PCA, and show that PCA reduces to SVD and is fundamentally connected to low rank approximations.

