EE445 Mod3-Lec1: Spectral Properties of Matrices

References:

• [CE-OptMod]: Chapter 3.3, 4, 5

[Lecturer: L.J. Ratliff]

[EE445 Mod3-L1]

Outline

- 1. Review Eigenvalues & Eigenvectors
- 2. Symmetric Matrices
- 3. Introduction to Singular values and SVD

Why are Spectral Properties Important in ML+OPT?

- Computational efficiency
- Analysis
- Dimensionality reduction
- Numerical stability

How will we see it used?

- 1. Kernel methods
- 2. Principle component analysis (unsupervised ML)
- 3. Principle component regression
- 4. (time permitting) spectral clustering

Reminder: Eigenvalues & Eigenvectors

Some basics:

• Def. (Characteristic Polynomial):

• Def. (Left/Right Eigenvector-value pair):

• Orthogonality:

Reminder: Eigenvalues & Eigenvectors

Why important?

- Many ML algorithms involve transforming the matrix A into simpler, or *canonical forms*, from which it is easy to compute its eigenvalues and eigenvectors.
- These transformations are called similarity transformations

Similarity transforms

• Def. [Similarity Transform]:

• **Proposition.** Similar matrices A and B has the same eigenvalues.

- Some special matrices are similar to diagonal matrices—i.e., for some matrices A, there is a similarity transform S such that $\Lambda = S^{-1}AS$ is diagonal, and Λ contains the eigenvalues of A.
- These matrices are called diagonalizable.

[Lecturer: L.J. Ratliff]

Part 2. Special Matrices [Symmetric and Positive (semi) definite]

Symmetric Matrices

Symmetric Matrix:

- · Symmetric matrices are one of the most important matrices in linear algebra and ML
- Mod2-L4: we often use kernel matrices $K = [K(x^{(i)}, x^{(j)})]$ and these are symmetric—i.e., $K = K^{\top}$ —since $K(x^{(i)}, x^{(j)}) = K(x^{(j)}, x^{(i)})$
- Mod2-L2: Gram matrices $A^{\top}A$ and AA^{\top} are symmetric;
 - in fact we can study all kinds of properties of a matrix A such as the range and null spaces using these gram matrices (cf. Finite Rank Operator Lemma)

Symmetric Matrices: Examples

The graph Laplacian is a symmetric matrix

Sample covariance matrix

Hessian of a function:

[Lecturer: L.J. Ratliff]

Quadratic Functions

- Symmetric matrices play an important role not just in ML but also OPT
- We have seen how to formulate least squares regression as a optimization problem with a quadratic objective:

$$||Ax - b||_2^2 = (Ax - b)^\top (Ax - b)$$

 A quadratic function f : ℝⁿ → ℝ is a second-order multivariate polynomial in x, that is a function containing a linear combination of all possible monomials of degree at most two—i.e.,

Quadratic Functions

• using properties of symmetric matrices, we can express any quadratic function as a quadratic form.

Symmetric Matrices: Eigendecomposition (Spectral Theorem)

• Every symmetric matrix A can be diagonalized as $A = V\Lambda V^{\top}$ with V formed by the orthonormal eigenvectors of A and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ a diagonal matrix of the eigenvalues of A

$$A = \underbrace{\begin{bmatrix} | & \cdots & | \\ v_1 & \cdots & v_n \\ | & \cdots & | \end{bmatrix}}_{V} \underbrace{\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \lambda_{n-1} & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}}_{\Lambda} \underbrace{\begin{bmatrix} - & v_1^\top & - \\ \vdots & \vdots & \vdots \\ - & v_n^\top & - \end{bmatrix}}_{V^\top}$$

or equivalently, $A = \lambda_1 v_1 v_1^\top + \dots + \lambda_n v_n v_n^\top$ (i.e., weighted sum of dyads)

- Additionally, $VV^{\top} = V^{\top}V = I$
- This factorization property and the fact that S has n orthogonal eigenvectors are two important properties for a symmetric matrix.

[Lecturer: L.J. Ratliff]

[EE445 Mod3-L1]

Example Problem: Eigenvalues are Real

Problem: Consider a symmetric matrix A. Show that the eigenvalues of A are real. **Solution**.

Example Problem: Orthogonality of Eigenvectors

Problem: Consider a symmetric matrix A. Show that eigenvectors corresponding to distinct eigenvalues are orthogonal. **Solution.**

Matrix powers with eigendecomposition

- Recall from Mod1 we saw many applications with matrix powers such as computing the number of paths of length k in a graph
- For symmetric matrices, computing matrix powers is easy

Positive Definite Matrices

- Another important class of matrices are positive definite matrices
- The matrix A is **positive definite** if $\langle Ax, x \rangle > 0$; sometimes we write $A \succ 0$
- And, A is positive semidefinite (PSD) if $\langle Ax, x \rangle \ge 0$; sometimes we write $A \succeq 0$
- Positive definite matrices need not be symmetric, but often we are interested in positive definite symmetric matrices
- Eigenvalues: let $\lambda_1(A) \geq \cdots \geq \lambda_n(A)$ be the order set of eigenvalues of $A = A^{\top}$

$$A \succeq 0 \iff \lambda_i(A) \ge 0, \ \forall i \in \{1, \dots, n\}$$
$$A \succ 0 \iff \lambda_i(A) > 0, \ \forall i \in \{1, \dots, n\}$$

Example Problem

Problem: Show that $A \succeq 0 \iff \lambda_i(A) \ge 0, \ \forall i \in \{1, \dots, n\}$ Solution.

Examples of PSD Matrices from ML and OPT

- Mod2-L4: we often use kernel matrices $K = [K(x^{(i)}, x^{(j)})]$ and these are symmetric and in general PSD
- Mod2-L2: Gram matrices $A^{\top}A$ and AA^{\top} are PSD

Problem: Show that Gram and Kernel matrices are PSD. **solution.**

Example Problem

Problem. Show that a matrix A is PSD if and only if $A = B^{\top}B$ for some real matrix B. Solution.

Part 3. SVD

Overview

- We just talked about special classes of matrices that have a nice decomposition in terms of their eigenvalues—namely, symmetric PSD matrices.
- Now, we will talk about a matrix decomposition that every matrix has-i.e., SVD
- And, it is fundamentally related to a key ML analysis tool: PCA

Matrix Decomposition

- Matrix decomposition, also known as matrix factorization, involves describing a given matrix using its constituent elements.
- Recall that you saw QR decomposition in Module 1 and then its use in Module 2 (e.g., solving least squares, in particular sparse problems)
- Perhaps the most known and widely used matrix decomposition method is the **Singular-Value Decomposition**, or SVD.
- All matrices have an SVD, which makes it more stable than other methods, such as the eigen-decomposition.
- We will see the SVD is useful for computing the pseudoinverse efficiently and for dimensionality reduction

Singular Value Decomposition

What is SVD?

- One can generalize eigenvalues/vectors to non-square matrices, in which case they are called singular vectors and singular values.
- The SVD is a unique matrix decomposition that exists for every matrix $A \in \mathbb{R}^{m \times n}$:

$$A = U\Sigma V^{\top}$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are *unitary* matrices, and $\Sigma \in \mathbb{R}^{m \times n}$ is a matrix with non-negative entries on the diagonal and zeros on the off diagonal.

• Unitary: $UU^{\top} = I$ and $VV^{\top} = I$

SVD as a Dyadic Exanpsion

An equivalent way to express the SVD $A = U\Sigma V^{\top}$ is as a dyadic expansion:

- That is, the SVD expresses A as a nonnegative linear combination of $\min\{m,n\}$ rank-1 matrices
- the singular values provide the multipliers
- the outer products of the left and right singular vectors provide the rank-1 matrices.

[Lecturer: L.J. Ratliff]

SVD

- The diagonal entries of Σ are called the singular values of A
- The column vectors of V are called the right singular vectors of \boldsymbol{A}
- The column vectors of U are called the left singular vectors of A.
- The number of nonzero singular values is equal to the rank of the matrix A.

[Lecturer: L.J. Ratliff]

Geometric View of SVD

Unpacking the SVD

- Let $A \in \mathbb{R}^{m \times n}$
- Fact 1. Both $A^{\top}A \in \mathbb{R}^{n \times n}$ and $AA^{\top} \in \mathbb{R}^{m \times m}$ are symmetric square matrices:

• Fact 2. Both $A^{\top}A$ and AA^{\top} share the same non-zero eigenvalues:

Unpacking the SVD

 According to the othogonally diagonalizable property of symmetric matrices, the matrices A^TA and AA^T can be decomposed as following:

• How to obtain the SVD?: Compute by diagonalizing the PSD symmetric matrices $A^{\top}A$ and AA^{\top}

[Lecturer: L.J. Ratliff]

[EE445 Mod3-L1]

Using the SVD to Compute Pseudo Inverses

 It turns out that using the SVD we have a very easy way to compute the pseudo-inverse of A—i.e., A[†] = (A[⊤]A)⁻¹A[⊤] which we saw in Mod1 & Mod2

Matrix Norms and Connections to Singular values

- Matrix norms and singular values have special relationships.
- Forbenius Norm:

$$\|A\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2} = (\mathsf{Tr}(A^\top A))^{1/2}$$

• Matrix *p*-norm: matrix *p*-Norm is defined as the largest scalar that you can get for a unit vector

$$||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p} = \max_{||x||_p = 1} ||Ax||_p$$

 \bullet Aside: supremum $\sup(\cdot)$ is the " least upper bound" of its argument

[Lecturer: L.J. Ratliff]

[EE445 Mod3-L1]

Matrix Norms: Spectral Norm

• Spectral Norm (Matrix 2-norm): Largest singular value of the matrix $\sigma_1(A)$

• Fact: show that $||A||_F = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2(A)}$ using the fact that $||A||_F = \sqrt{\operatorname{Tr}(A^{\top}A)}$ [Lecturer: L.J. Ratliff] [EE445 Mod3-L1] 32

Reduced SVD & Low Rank Approximation

- Rank of Λ is $r \implies$ there are r non-zero eigenvalues of the matrices $A^{\top}A$ and AA^{\top}
- Reduced SVD:

Low Rank Structure

Low Rank Structure

$$A = uv^{\top} =$$

$$A = uv^\top + wz^\top =$$

[Lecturer: L.J. Ratliff]

Low Rank Approximation

• Low Rank Approximation: take only top k-singular values and corresponding dyads in the dyadic expansion

- Low Rank Approximation is an important tool for many applications including
 - Linear system identification: approximating matrix is Hankel structured. (You saw this in M2-N2.ipynb)
 - ► ML: feature space dimensionality reduction
 - Recommender systems: matrix completion
 - Distance matrix completion where there is a positive definiteness constraint.
 - Natural language processing where the approximation is non-negative.
 - Image or video compression

Example: Compression

- Compression. A low-rank approximation provides a (lossy) compressed version of the data matrix.
 - ▶ The original matrix A is described by mn numbers, while describing Y and Z^{\top} requires only k(m+n) numbers.
 - When k is small relative to m and n, replacing the product of m and n by their sum is a big win.
 - ▶ With images, a modest value of k (say 100 or 150) is usually enough to achieve approximations that look a lot like the original image.

[Lecturer: L.J. Ratliff]

Optimality of Low Rank Approximation

- The low rank approximation obtained via SVD is optimal in the following sense.
- Recall the Forbenius norm:

- i.e., $\ell_2\text{-norm}$ (i.e., usual Euclidean norm) applied to the matrix as if it were a vector
- Theorem [Eckat-Young-Mirsky].

How to choose k?

- When producing a low-rank matrix approximation, we have been taking as a parameter the target rank k.
- Ideal Setting: the singular values of A give strong guidance
 - ▶ if the top few singular values are big and the rest are small, then the obvious solution is to take k equal to the number of "big values".
- Less Ideal Setting: take k as small as possible subject to obtaining a useful approximation, where what "useful" means depends on the application.
 - e.g., a common rule of thumb is to choose k such that the sum of the top k singular values is at least c times as big as the sum of the other singular values, where c is a domain-dependent constant (like 10, say).

Next Up

• Next lecture we will talk about PCA, and show that PCA reduces to SVD and is fundamentally connected to low rank approximations.