EE445 Mod2-Lec4: Kernel Regression

What is Kernel Regression?

- We have been talking about supervised $M L$ in the context of data fitting with least squares
- Cost function paradigm for supervised machine learning
- Features x
- Output/response y
- Goal: Find $f(x)$ such that $f\left(x^{(i)}\right) \approx y^{(i)}$
- objective/cost function $F(\theta)=\|A \theta-y\|^{2}$

Kernel Motivation

- But what we really want are flexible non-linear classifers/predictors!
- We can get this via a linear model using the kernel trick
- Note that feature maps are already all non-linear

$$
x \mapsto 1, x, x^{2}, \ldots
$$

- Yet, we want something a little more automatic that implicitly captures nonlinearities without expanding out data to many times the original size
- Kernels give us this

Kernel Trick: Starting Point

-

\theta=\sum_{i=1}^{m} \alpha_{i} x^{(i)} \quad for some \alpha_{1}, ···, \alpha_{m} \in \mathbb{R}
\]

i.e., θ is in the span of the feature vectors

- We will see shortly how to find these α_{i} 's

Kernel Trick: Linear Regression

- [A2](%5B): $\theta=\sum_{i=1}^{m} \alpha_{i} x^{(i)} \quad$ for some $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$

$$
f(x)=\theta^{\top} x=\left(\sum_{i=1}^{m} \alpha_{i} x^{(i)}\right)^{\top} x=\sum_{i=1}^{m} \alpha_{i}\left(x^{(i)}\right)^{\top} x=\sum_{i=1}^{m} \alpha_{i} K\left(x^{(i)}, x\right)
$$

- Kernel function: $K(x, z)=x^{\top} z$
- Predictions only depend on training data through kernel function which is just a dot product.

Linear Regression: Objective Function

- [A2](%5B): $\theta=\sum_{i=1}^{m} \alpha_{i} x^{(i)}$ for some $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$
- The predictor has the form

$$
f(x)=\sum_{i=1}^{m} \alpha_{i} K\left(x^{(i)}, x\right)
$$

- The objective function has the form

$$
\frac{1}{2} \sum_{i=1}^{m}\left(f\left(x^{(i)}\right)-y^{(i)}\right)^{2}=\frac{1}{2} \sum_{i=1}^{m}\left(\sum_{j=1}^{m} \alpha_{j} K\left(x^{(j)}, x^{(i)}\right)-y^{(i)}\right)^{2}=: F(\alpha)
$$

- Objective function only depends on training data through kernel function which is just dot products
- Choose α by minimizing $F(\alpha)$

Kernel Trick: Take Aways

- Predictor and objective only depend on training data through the kernel which is itself just dot products
- Hence, if we only have the ability to do dot product operations, then we can still suprisingly train a model (i.e., find a prediction of y)

Kernelized Linear Regression

- Rewrite linear regression as a different linear regression model:

$$
f(x)=\sum_{i=1}^{m} \alpha_{i} K\left(x^{(i)}, x\right)=\alpha^{\top} k(x)
$$

where

$$
\alpha^{\top}=\left[\begin{array}{lll}
\alpha_{1} & \cdots & \alpha_{m}
\end{array}\right] \quad \text { and } \quad k(x)=\left[\begin{array}{c}
K\left(x^{(1)}, x\right) \\
\vdots \\
K\left(x^{(m)}, x\right)
\end{array}\right]
$$

- i.e., we map x to a new "feature vector" $k(x)$ (= kernel evaluation between x and each training feature vector).

What happens to original data matrix X under this mapping?

- Recall: i-th row of X is i-th feature vector $x^{(i)}$
- Kernel Matrix: new "data matrix" K such that the i-th row contains dot products between $x^{(i)}$ and every other training point:

$$
K_{i j}=K\left(x^{(i)}, x^{(j)}\right)=\left(x^{(i)}\right)^{\top} x^{(j)}
$$

- Sometimes this is called the Kernel Trick.
- Take-Away: you can learn an equivalent linear model using the kernel matrix in place of the original data matrix.
- this equivalence is only exact without regularization (I will talk about this shortly)

Nonlinear Feature Maps

- Suppose we want to do feature mappings before learning such as

$$
f(x)=\theta^{\top} \phi(x), \quad \phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}
$$

- Kernel corresponding to ϕ : To solve the learning problem and make predictions, we only need to be able to compute

$$
K(x, z)=\phi(x)^{\top} \phi(z)
$$

Examples: Polynomial Kernel

Note: we can often compute kernel without actually doing the expansion

- Consider $K(x, z)=\left(x^{\top} z\right)^{2}$
- What is $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$?

$$
\phi(x)=\left(x_{1}^{2}, x_{1} x_{2}, x_{2} x_{1}, x_{2}^{2}\right)
$$

- Check:

$$
K(x, z)=\left(x^{\top} z\right)^{2}=\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\top}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]\right)^{2}=\left(z_{1} x_{1}+z_{2} x_{2}\right)^{2}=x_{1}^{2} z_{1}^{2}+2 z_{1} x_{1} \cdot x_{2} z_{2}+z_{2}^{2} x_{2}^{2}
$$

and

$$
\phi(x)^{\top} \phi(z)=\left[\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2} x_{1} \\
x_{2}^{2}
\end{array}\right]^{\top}\left[\begin{array}{c}
z_{1}^{2} \\
z_{1} z_{2} \\
z_{2} z_{1} \\
z_{2}^{2}
\end{array}\right]=x_{1}^{2} z_{1}^{2}+2 z_{1} x_{1} \cdot x_{2} z_{2}+z_{2}^{2} x_{2}^{2}
$$

Examples: Polynomial Kernel

Note: computational complexity is lower

- Consider $K(x, z)=\left(x^{\top} z+1\right)^{2}$
- What is $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$?

$$
\phi(x)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2} x_{1}, x_{2}^{2}\right)
$$

- complexity of $\phi(x)^{\top} \phi(z): O\left(n^{2}\right)$
- complexity of $x^{\top} z: O(n)$
- complexity of $\left(x^{\top} z+1\right)^{2}: O(n)$
- If using kernel trick, can implement a non-linear feature expansion at no additional cost
- More general: $K(x, z)=\left(x^{\top} z+1\right)^{d}$
- complexity of computing corresponding features with $\phi: O\left(n^{d}\right)$
- complexity of computing K : $O(n)$

Example: Gaussian Kernel

$$
K(x, z)=\exp \left(-\gamma\|x-z\|^{2}\right)
$$

Some observations:

- non-linear kernel with a lot of flexibility
- corresponds to an infinite dimensional ϕ-i.e., cannot implement the corresponding feature mapping ϕ.

In Practice: Regularization

- We often introduce a regularization term in practice:

$$
F(\theta)=\sum_{k=1}^{m}\left(\theta^{\top} \phi\left(x^{(k)}\right)-y^{(k)}\right)^{2}+\frac{\lambda}{2}\|\theta\|^{2}
$$

- why?: Regularization improves the conditioning of the problem and reduces the variance of the estimates.
- Taking derivatives and setting them to zero we have

$$
\begin{aligned}
& \sum_{k=1}^{m}\left(\theta^{\top} \phi\left(x^{(k)}\right)-y^{(k)}\right) \phi\left(x^{(k)}\right)=\lambda \theta \\
& \quad \begin{array}{l}
\text { i.e., } \lambda \text { helps stabilize the } \\
\text { inverse. }
\end{array} \\
& \quad \hat{\theta}=\left(\lambda I+\sum_{k=1}^{m} \phi\left(x^{(k)}\right) \phi\left(x^{(k)}\right)^{\top}\right)^{-1} \sum_{j=1}^{m} \phi\left(x^{(j)}\right) y^{(j)}
\end{aligned}
$$

Deriving the α-dependent regularization term

Recall that we converted $F(\theta)$ to a cost in terms of α. We will do the same thing for the regularized cost.

- [A2](%5B): $\theta=\sum_{i=1}^{m} \alpha_{i} x^{(i)} \quad$ for some $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$

$$
\begin{aligned}
\|\theta\|^{2}=\theta^{\top} \theta & =\left(\sum_{k=1}^{m} \alpha_{k} \phi\left(x^{(k)}\right)\right)^{\top}\left(\sum_{k=1}^{m} \alpha_{k} \phi\left(x^{(k)}\right)\right) \\
& =\sum_{k=1}^{m} \sum_{j=1}^{m} \alpha_{k} \alpha_{j} \phi\left(x^{(k)}\right)^{\top} \phi\left(x^{(j)}\right) \\
& =\sum_{k=1}^{m} \sum_{j=1}^{m} \alpha_{k} \alpha_{j} K\left(x^{(k)}, x^{(j)}\right) \\
& =\alpha^{\top} K \alpha
\end{aligned}
$$

Kernelized Regression Regularized Cost (Ridge Regression)

$$
F(\alpha)=\frac{1}{2}\|K \alpha-y\|^{2}+\frac{\lambda}{2} \alpha^{\top} K \alpha
$$

so that taking derivatives, we have

$$
K(K \alpha-y)+\lambda K \alpha=0 \Longleftrightarrow K(K+\lambda I) \alpha=K y
$$

One solution is

$$
\alpha=(K+\lambda I)^{-1} y
$$

- This turns out to be the only solution we care about due to the form of our predictor $f(\cdot)$; any other solution won't affect the final form of our predictor.
- Choose λ via cross validation!

