
EE445 Mod2-Lec4: Kernel Regression

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 1

What is Kernel Regression?

• We have been talking about supervised ML in the context of data fitting with least
squares

• Cost function paradigm for supervised machine learning
▶ Features x
▶ Output/response y
▶ Goal: Find f(x) such that f(x(i)) ≈ y(i)

▶ objective/cost function F (θ) = ∥Aθ − y∥2

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 2

Kernel Motivation

• But what we really want are flexible non-linear classifers/predictors!
• We can get this via a linear model using the kernel trick
• Note that feature maps are already all non-linear

x 7→ 1, x, x2, . . .

• Yet, we want something a little more automatic that implicitly captures nonlinearities
without expanding out data to many times the original size

• Kernels give us this

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 3

Kernel Trick: Starting Point

• [A2]:

θ =

m∑
i=1

αix
(i) for some α1, . . . , αm ∈ R

i.e., θ is in the span of the feature vectors
• We will see shortly how to find these αi’s

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 4

Kernel Trick: Linear Regression

• [A2]: θ =
∑m

i=1 αix
(i) for some α1, . . . , αm ∈ R

f(x) = θ⊤x =

(
m∑
i=1

αix
(i)

)⊤

x =

m∑
i=1

αi(x
(i))⊤x =

m∑
i=1

αiK(x(i), x)

• Kernel function: K(x, z) = x⊤z

• Predictions only depend on training data through kernel function which is just a dot
product.

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 5

Linear Regression: Objective Function

• [A2]: θ =
∑m

i=1 αix
(i) for some α1, . . . , αm ∈ R

• The predictor has the form

f(x) =

m∑
i=1

αiK(x(i), x)

• The objective function has the form

1

2

m∑
i=1

(f(x(i))− y(i))2 =
1

2

m∑
i=1

 m∑
j=1

αjK(x(j), x(i))− y(i)

2

=: F (α)

• Objective function only depends on training data through kernel function which is just
dot products

• Choose α by minimizing F (α)
[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 6

Kernel Trick: Take Aways

• Predictor and objective only depend on training data through the kernel which is itself
just dot products

• Hence, if we only have the ability to do dot product operations, then we can still
suprisingly train a model (i.e., find a prediction of y)

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 7

Kernelized Linear Regression

• Rewrite linear regression as a different linear regression model:

f(x) =

m∑
i=1

αiK(x(i), x) = α⊤k(x)

where

α⊤ =
[
α1 · · · αm

]
and k(x) =

K(x(1), x)
...

K(x(m), x)

• i.e., we map x to a new “feature vector" k(x) (= kernel evaluation between x and each

training feature vector).

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 8

What happens to original data matrix X under this mapping?

• Recall: i–th row of X is i–th feature vector x(i)

• Kernel Matrix: new "data matrix" K such that the i–th row contains dot products
between x(i) and every other training point:

Kij = K(x(i), x(j)) = (x(i))⊤x(j)

• Sometimes this is called the Kernel Trick.
• Take-Away: you can learn an equivalent linear model using the kernel matrix in place

of the original data matrix.
• this equivalence is only exact without regularization (I will talk about this shortly)

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 9

Nonlinear Feature Maps

• Suppose we want to do feature mappings before learning such as

f(x) = θ⊤ϕ(x), ϕ : Rn → Rp

• Kernel corresponding to ϕ: To solve the learning problem and make predictions, we
only need to be able to compute

K(x, z) = ϕ(x)⊤ϕ(z)

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 10

Examples: Polynomial Kernel

Note: we can often compute kernel without actually doing the expansion
• Consider K(x, z) = (x⊤z)2

• What is ϕ : R2 → R4?
ϕ(x) = (x21, x1x2, x2x1, x

2
2)

• Check:

K(x, z) = (x⊤z)2 =

([
x1
x2

]⊤ [
z1
z2

])2

= (z1x1 + z2x2)
2 = x21z

2
1 +2z1x1 · x2z2 + z22x

2
2

and

ϕ(x)⊤ϕ(z) =

x21

x1x2
x2x1
x22

⊤

z21
z1z2
z2z1
z22

 = x21z
2
1 + 2z1x1 · x2z2 + z22x

2
2

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 11

Examples: Polynomial Kernel

Note: computational complexity is lower
• Consider K(x, z) = (x⊤z + 1)2

• What is ϕ : R2 → R4?

ϕ(x) = (1,
√
2x1,

√
2x2, x

2
1, x1x2, x2x1, x

2
2)

• complexity of ϕ(x)⊤ϕ(z): O(n2)

• complexity of x⊤z: O(n)

• complexity of (x⊤z + 1)2: O(n)

• If using kernel trick, can implement a non-linear feature expansion at no additional cost
• More general: K(x, z) = (x⊤z + 1)d

▶ complexity of computing corresponding features with ϕ: O(nd)
▶ complexity of computing K: O(n)

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 12

Example: Gaussian Kernel

K(x, z) = exp(−γ∥x− z∥2)

Some observations:
• non-linear kernel with a lot of flexibility
• corresponds to an infinite dimensional ϕ—i.e., cannot implement the corresponding

feature mapping ϕ.

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 13

In Practice: Regularization

• We often introduce a regularization term in practice:

F (θ) =

m∑
k=1

(θ⊤ϕ(x(k))− y(k))2 +
λ

2
∥θ∥2

• why?: Regularization improves the conditioning of the problem and reduces the
variance of the estimates.

• Taking derivatives and setting them to zero we have

m∑
k=1

(θ⊤ϕ(x(k))− y(k))ϕ(x(k)) = λθ

=⇒ θ̂ =

(
λI +

m∑
k=1

ϕ(x(k))ϕ(x(k))⊤

)−1 m∑
j=1

ϕ(x(j))y(j)

i.e., λ helps stabilize the
inverse.

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 14

Deriving the α-dependent regularization term

Recall that we converted F (θ) to a cost in terms of α. We will do the same thing for the
regularized cost.
• [A2]: θ =

∑m
i=1 αix

(i) for some α1, . . . , αm ∈ R

∥θ∥2 = θ⊤θ =

(
m∑
k=1

αkϕ(x
(k))

)⊤(m∑
k=1

αkϕ(x
(k))

)

=

m∑
k=1

m∑
j=1

αkαjϕ(x
(k))⊤ϕ(x(j))

=

m∑
k=1

m∑
j=1

αkαjK(x(k), x(j))

= α⊤Kα

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 15

Kernelized Regression Regularized Cost (Ridge Regression)

F (α) =
1

2
∥Kα− y∥2 + λ

2
α⊤Kα

so that taking derivatives, we have

K(Kα− y) + λKα = 0 ⇐⇒ K(K + λI)α = Ky

One solution is
α = (K + λI)−1y

• This turns out to be the only solution we care about due to the form of our predictor
f(·); any other solution won’t affect the final form of our predictor.

• Choose λ via cross validation!

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 16

