EE445 Mod2-Lec4: Kernel Regression

What is Kernel Regression?

$$
\begin{aligned}
& \rightarrow \text { prediction } \rightarrow \text { List. Spas. featum rAps } \\
& \rightarrow \text { classitac } \rightarrow-\mathrm{a}-
\end{aligned}
$$

- We have been talking about supervised ML in the context of data fitting with least squares
- Cost function paradigm for supervised machine learning

$$
\left\{\begin{array}{l}
\text { Features } x \leftharpoonup \\
\text { Output/response } y \leftarrow \\
\text { Goal: Find } f(x) \text { such that } f\left(x^{(i)}\right) \approx y^{(i)} \leftarrow \\
\text { objective/cost function } F(\theta)=\|A \theta-y\|^{2} \leftarrow
\end{array}\right.
$$

Kernel Motivation

- But what we really want are flexible non-linear classifers/predictors!
- We can get this via a linear model using the kernel trick
- Note that feature maps are already all non-linear

$$
x_{1} \cdot x_{2}
$$

$$
x \mapsto 1, x, x^{2}, \ldots
$$

- Yet, we want something a little more automatic that implicitly captures nonlinearities without expanding out data to many times the original size
- Kernels give us this

Kernel Trick: Starting Point

$$
x^{(i)}: \text { featurevectors }
$$

-

\theta=\sum_{i=1}^{m} \alpha_{i} x^{(i)} for some \alpha_{1}, ···, \alpha_{m} \in \mathbb{R}
\]

i.e., θ is in the span of the feature vectors

- We will see shortly how to find these α_{i} 's

Kernel Trick: Linear Regression
[[AL]: $\theta=\sum_{i=1}^{m} \alpha_{i} x^{(i)} \quad$ for some $\left.\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}\right]$

$$
\begin{aligned}
f(x)=\theta^{\top} x=\left(\sum_{i-1}^{M} \alpha_{i} x^{(i)}\right)^{\top} x & =\sum_{i=1}^{m} \alpha_{i} \cdot\left(x^{(i)}\right)^{\top} x \\
& =\sum_{i=1}^{m} \alpha_{i} K\left(x^{(i)}, x\right)
\end{aligned}
$$

- Kernel function: $K(x, z)=x^{\top} z$
- Predictions only depend on training data through kernel function which is just a dot product.

Linear Regression: Objective Function
\downarrow

- [AR]: $\theta=\sum_{i=1}^{m} \alpha_{i} x^{(i)} \quad$ for some $\quad \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$
- The predictor has the form

$$
K(z, x)=\lambda^{\top} z
$$

$$
f(x)=\sum_{i=1}^{m} \underbrace{\downarrow} \alpha_{i} K\left(x^{(i)}, x\right) \sum^{\left\langle x^{(i)},\right.} x^{(j)}\rangle \uparrow
$$

- The objective function has the form

$$
\frac{1}{2} \sum_{i=1}^{m}\left(f\left(x^{(i)}\right)-y^{(i)}\right)^{2}=\frac{1}{2} \sum_{i=1}^{m}\left(\sum_{j=1}^{m} \alpha_{j} K\left(x^{(i)} i^{(i)}\right)-y^{(i)}\right)^{2}=5 F(\alpha)
$$

- Objective function only depends on training data through kernel function which is just dot products
- Choose α by minimizing $F(\alpha)$

Kernel Trick: Take-Aways

- Predictor and objective only depend on training data through the kernel which is itself just dot products
- Hence, if we only have the ability to do dot product operations, then we can still suprisingly train a model (i.e., find a prediction of y)

Kernelized Linear Regression

$$
f(x)=\theta^{2} x
$$

- Rewrite linear regression as a different linear regression model:

$$
f(x)=\sum_{i=1}^{m} \alpha_{i} K\left(x^{(i)}, x\right)=\underline{\alpha^{\top} k(x)}
$$

where

$$
\alpha^{\top}=\left[\begin{array}{lll}
\alpha_{1} & \cdots & \alpha_{m}
\end{array}\right] \quad \text { and } \quad k(x)=\left[\begin{array}{c}
\left.\frac{\ell\left(x^{(1)}, x\right)}{} \begin{array}{c}
\\
\vdots\left(x^{(m)}, x\right)
\end{array}\right]
\end{array}\right.
$$

- ie., we map x to a new "feature vector" $k(x)$ ($=$ kernel evaluation between x and each training feature vector).

What happens to original data matrix Xunder this mapping?

- Recall: i-th row of X is i-th feature vector $x^{(i)}$
- Kernel Matrix: new "data matrix" K such that the i-th row contains dot products between $x^{(i)}$ and every other training point:

$$
\begin{aligned}
& K_{i j}=K\left(x^{(i)}, x^{(j)}\right)=\left(x^{(i)}\right)^{\top} x^{(j)}\left[\begin{array}{l}
\left.\left.x^{(i)}\right)^{\top} \dot{x}^{(1)}\left(x^{(1)}\right)^{\top} x^{(2)}\right] \ldots . \\
\text { the Kernel Trick. }
\end{array} . \quad \begin{array}{l}
\end{array}\right] .
\end{aligned}
$$

- Sometimes this is called the Kernel Trick.
- Take-Away: you can learn an equivalent linear model using the kernel matrix in place of the original data matrix.
- this equivalence is only exact without regularization (I will talk about this shortly)

Nonlinear Feature Maps

$$
f(x)=\theta^{\top} x, \quad K(x, z)=x^{\top} z
$$

$$
M_{0} d z-L_{2} \cdot L
$$

- Suppose we want to do feature mappings before learning such as

$$
\frac{f(x)=\theta^{\top} \phi(x),}{} \quad \phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}
$$

- Kernel corresponding to ϕ : To solve the learning problem and make predictions, we only need to be able to compute

$$
K(x, z)=\phi(x)^{\top} \phi(z)
$$

$$
\left.\left[\phi\left(x^{i i}\right)\right)^{\top} \phi\left(x^{(i)}\right)\right]
$$

Examples: Polynomial Kernel

$$
\phi(x)^{\top} \phi(z)
$$

Note: we can often compute kernel without actually doing the expansion

- Consider $K(x, z)=\left(x^{\top} z\right)^{2}$
- What is $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$?

$$
\underbrace{\phi(x)}=\left(x^{\left(x_{1}^{2}, x_{1} x_{2}, x_{2} x_{1}, x_{2}^{2}\right)} x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \rightarrow \phi(x) \in \mathbb{R}^{\varphi}\right.
$$

- Check:

$$
\begin{aligned}
& K(x, z)=\left(x^{\top} z\right)^{2}=\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\top}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]\right)^{2}=\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2}=x_{1}^{2} z_{1}^{2}+2 z_{1} x_{1} \cdot x_{2} z_{2} \\
& \phi(x)^{\top} \phi(z)=\left[\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2}^{2} x_{2}^{2} \\
x_{2} x_{1} \\
x_{2}^{2}
\end{array}\right]^{\top}\left[\begin{array}{c}
z_{1}^{2} \\
z_{1} z_{2} \\
z_{2} z_{1} \\
z_{2}^{2}
\end{array}\right]=
\end{aligned}
$$

Examples: Polynomial Kernel

Note: computational complexity is lower

$$
\phi(x)^{\top} \phi(z) \quad \text { } x \in \mathbb{R}^{n}
$$

- What is $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$?

$$
\phi(x)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2} x_{1}, x_{2}^{2}\right)
$$

- complexity of $\phi(x)^{\top} \phi(z): O\left(n^{2}\right)$
${ }^{-}$complexity of $x^{\top} z: O(n)$
- complexity of $\left(x^{\top} z+1\right)^{2}: O(n)$
- If using kernel trick, can implement a non-linear feature expansion at no additional cost
- More general: $K(x, z)=\left(x^{\top} z+1\right)^{d}$
- complexity of computing corresponding features with $\phi: O\left(n^{d}\right)$
- complexity of computing K : $O(n)$

Example: Gaussian Kernel

$$
K(x, z)=\exp \left(-\gamma\|x-z\|^{2}\right)
$$

Some observations:

- non-linear kernel with a lot of flexibility
- corresponds to an infinite dimensional ϕ-i.e., cannot implement the corresponding feature mapping ϕ.
$\theta=\sum \alpha_{i} x^{(i)} \quad$ In Practice: Regularization
- We often introduce a regularization term in practice:

$$
K(x, z)=\phi^{\top}(x) \phi(z)
$$

$$
F(\theta)=\frac{1}{2} \sum_{k=1}^{m}\left(\theta^{\top} \phi\left(y^{(b)}-\theta^{\top} \phi\left(x^{(k)}\right)\right)^{2} y^{(k)}\right)^{2}+\frac{\lambda}{2}\|\theta\|_{2}^{2} \rightarrow \text { arguin is }
$$

- why?: Regularization improves the conditioning of the problem and reduces the variance of the estimates.
- Taking derivatives and setting them to zero we have

$$
\begin{aligned}
& \sum_{n=1}^{m}\left(y^{(k)}-\theta^{2} \phi\left(x^{(k)}\right)\right) \phi\left(x^{(k)}\right)^{\top}=\lambda \theta \\
& \Longrightarrow \hat{\theta}=\left(\lambda I+\sum_{k=1}^{m} \phi\left(x^{(n)}\right) \phi\left(x^{(k)}\right)^{\top}\right)^{-1} \sum_{\hat{j}=1}^{m} \phi\left(x^{(j)}\right) y^{(j)}
\end{aligned}
$$

Deriving the α-dependent regularization term
Recall that we converted $F(\theta)$ to a cost in terms of α. We will do the same thing for the regularized cost.

- [AL]: $\theta=\sum_{i}^{m} x^{(i)}$ for some $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$

$$
\sum_{i=1}^{m} \alpha_{i} \phi\left(x^{(i)}\right)=\theta
$$

$$
\begin{aligned}
&\|\theta\|^{2}=\theta^{\top} \theta=\left(\sum_{i=1}^{m} \alpha_{i} \phi\left(x^{(i)}\right)\right)^{\top}\left(\sum_{i=1}^{m} \alpha_{i} \phi\left(x^{(i)}\right)\right) \\
&=\sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} \underbrace{\left.\left(x^{(i)}\right)\right)^{\top} \phi\left(x^{(j)}\right)}_{k\left(x^{(i)}, x^{(j)}\right)}=\alpha^{\top} K \alpha \\
& K_{i j}=K\left(x^{(i)} x^{(j)}\right)
\end{aligned}
$$

Kernelized Regression Regularized Cost (Ridge Regression)
Dan She do on cm

$$
\underline{F(\alpha)}=\frac{1}{2}\|K \alpha-y\|^{2}+\frac{\lambda^{2}}{2} \alpha^{\top} K \alpha \quad \text { Lasso Regness.bn }
$$

$$
k(k \alpha-y)+\lambda k \alpha=0 \Leftrightarrow k(k+\lambda I) \alpha=k y
$$

$$
\Leftrightarrow \quad \alpha=\frac{(k+\lambda I)^{-1}}{T} y
$$

$$
\left.f(x)=\left(\sum_{i=1}^{m} \alpha_{i} \phi\left(x^{i}\right)\right)\right)^{\top} \phi(x)
$$

- Choose λ via cross validation!

