
EE445 Mod2-Lec4: Kernel Regression

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 1

 



What is Kernel Regression?

• We have been talking about supervised ML in the context of data fitting with least
squares

• Cost function paradigm for supervised machine learning
I Features x

I Output/response y

I Goal: Find f(x) such that f(x(i)) ⇡ y
(i)

I objective/cost function F (✓) = kA✓ � yk2
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Kernel Motivation

• But what we really want are flexible non-linear classifers/predictors!
• We can get this via a linear model using the kernel trick
• Note that feature maps are already all non-linear

x 7! 1, x, x2, . . .

• Yet, we want something a little more automatic that implicitly captures nonlinearities
without expanding out data to many times the original size

• Kernels give us this
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Kernel Trick: Starting Point

• [A2]:

✓ =
mX

i=1

↵ix
(i) for some ↵1, . . . ,↵m 2 R

i.e., ✓ is in the span of the feature vectors
• We will see shortly how to find these ↵i’s
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Kernel Trick: Linear Regression

• [A2]: ✓ =
Pm

i=1 ↵ix
(i) for some ↵1, . . . ,↵m 2 R

• Kernel function: K(x, z) = x
>
z

• Predictions only depend on training data through kernel function which is just a dot
product.
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Linear Regression: Objective Function

• [A2]: ✓ =
Pm

i=1 ↵ix
(i) for some ↵1, . . . ,↵m 2 R

• The predictor has the form

f(x) =
mX

i=1

↵iK(x(i), x)

• The objective function has the form

• Objective function only depends on training data through kernel function which is just
dot products

• Choose ↵ by minimizing F (↵)
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Kernel Trick: Take-Aways

• Predictor and objective only depend on training data through the kernel which is itself
just dot products

• Hence, if we only have the ability to do dot product operations, then we can still
suprisingly train a model (i.e., find a prediction of y)
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Kernelized Linear Regression

• Rewrite linear regression as a different linear regression model:

f(x) =
mX

i=1

↵iK(x(i), x) = ↵
>
k(x)

where

↵
> =

⇥
↵1 · · · ↵m

⇤
and k(x) =

2

64
K(x(1), x)

...
K(x(m)

, x)

3

75

• i.e., we map x to a new “feature vector" k(x) (= kernel evaluation between x and each
training feature vector).

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4] 8

fink On

It



What happens to original data matrix X under this mapping?

• Recall: i–th row of X is i–th feature vector x(i)

• Kernel Matrix: new "data matrix" K such that the i–th row contains dot products
between x

(i) and every other training point:

Kij = K(x(i), x(j)) = (x(i))>x(j)

• Sometimes this is called the Kernel Trick.
• Take-Away: you can learn an equivalent linear model using the kernel matrix in place

of the original data matrix.
• this equivalence is only exact without regularization (I will talk about this shortly)
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Nonlinear Feature Maps

• Suppose we want to do feature mappings before learning such as

f(x) = ✓
>
�(x), � : Rn ! Rp

• Kernel corresponding to �: To solve the learning problem and make predictions, we
only need to be able to compute

K(x, z) = �(x)>�(z)
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Examples: Polynomial Kernel

Note: we can often compute kernel without actually doing the expansion
• Consider K(x, z) = (x>z)2

• What is � : R2 ! R4?
�(x) = (x21, x1x2, x2x1, x

2
2)

• Check:
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Examples: Polynomial Kernel

Note: computational complexity is lower
• Consider K(x, z) = (x>z + 1)2

• What is � : R2 ! R4?

�(x) = (1,
p
2x1,

p
2x2, x

2
1, x1x2, x2x1, x

2
2)

• complexity of �(x)>�(z): O(n2)

• complexity of x>z: O(n)

• complexity of (x>z + 1)2: O(n)

• If using kernel trick, can implement a non-linear feature expansion at no additional cost
• More general: K(x, z) = (x>z + 1)d

I complexity of computing corresponding features with �: O(nd)
I complexity of computing K: O(n)
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Example: Gaussian Kernel

K(x, z) = exp(��kx� zk2)

Some observations:
• non-linear kernel with a lot of flexibility
• corresponds to an infinite dimensional �—i.e., cannot implement the corresponding

feature mapping �.
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In Practice: Regularization

• We often introduce a regularization term in practice:

F (✓) =
mX

k=1

(✓>�(x(k))� y
(k))2 +

�

2
k✓k2

• why?: Regularization improves the conditioning of the problem and reduces the
variance of the estimates.

• Taking derivatives and setting them to zero we have
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Deriving the ↵-dependent regularization term

Recall that we converted F (✓) to a cost in terms of ↵. We will do the same thing for the
regularized cost.

• [A2]: ✓ =
Pm

i=1 ↵ix
(i) for some ↵1, . . . ,↵m 2 R
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Kernelized Regression Regularized Cost (Ridge Regression)

F (↵) =
1

2
kK↵� yk2 + �

2
↵
>
K↵

• Choose � via cross validation!
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