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What is Kernel Regression?
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e We have been talking about supervised ML in the context of data fitting with least
squares
e Cost function paradigm for supervised machine learning

» Features z ~

» Qutput/response y <

» Goal: Find f(z) such that f(z(®) =y &=
> objective/cost function F(0) = ||A0 — y||* ~£—

P
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Kernel Motivation

But what we really want are flexible non-linear classifers/predictors!

® We can get this via a linear model using the kernel trick
® Note that feature maps are already all non-linear X
%
z— 1z 2% ...
® Yet, we want something a little more automatic that implicitly captures nonlinearities

without expanding out data to many times the original size

Kernels give us this
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Kernel Trick: Starting Point

)
L - zah/\p \/lﬂ{'D/J

o [A2]: ‘Z

m
0 = Z@ﬂ@ for some aq,...,0, €R

e i=1
i.e., 0 is in the span of the feature vectors

e \We will see shortly how to find these «;'s

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4]



Kernel Trick: Linear Regression

E [A2]: 0 =37 a;zD  for some ay,...,qm, € H{I
m

- 95 - (e » Fa o
7=y l-:\

MU

- ZO(; K (’LU)/ ')l.)

L2

¢ Kernel function: K(z,2) =z 'z

¢ Predictions only depend on training data through kernel function which is just a dot
product.
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Linear Regression: Objective Function K=~

!
= [A2]: 0=>", a;z  for some ai,...,am €R
® The predictor has the form a ()
T ) /“JQCL 2 D 7
(=) =22 m o

® The objective function has the form

M
" " SE (i)
( : O\ ] Z [ 4) Cu))_, jﬂﬂ )
~ \] (l —_ _ ‘ l X, = K
1E(H*L\‘?}L> = 2 ,ZKJK / )
L=t 9_’(%@\ (=1 =t r
® Objective function only depends on training data through kernel function which is just
dot products TE (o) =0
— O( oyl

® Choose a by minimizing F'(«)
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Kernel Trick: Take-Aways

® Predictor and objective only depend on training data through the kernel which is itself
just dot products

® Hence, if we only have the ability to do dot product operations, then we can still
suprisingly train a model (i.e., find a prediction of y)
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Kernelized Linear Regression

f~ B

® Rewrite linear regression as a different linear regression model:

_—

f(x) = ZaiK(az(i),x) =a k(z)

where 4
K(zW, z)

al = lon - ] and k(z) = ;
K(z™) x)

ky@ﬁ‘
® ie, we map x to a new ‘feature vector" k(x) (= kernel evaluation between = and each
training feature vector).
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What happens to original data matr|>< nder this mapping?
(x)

/\ ,ZU») J <( / ) @

Recall: i—th row of X is i—th feature vector (%)

° new "data matrix" K such that the i—th row contains dot products

between (¥ and every other training point:
I y &P (()Tiu) U))TZQ) S

Ky = K (W, 20)) = () T20)

Sometimes this is called the

Take-Away: you can learn an equivalent linear model using the kernel matrix in place
of the original data matrix.

this equivalence is only exact without regularization (I will talk about this shortly)
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Nonlinear Feature Maps
(/L\ /’l /r ‘ _ <
SRR fa)= o' Klza)= 2%

L .

I\I\DA)_L’ Le <L
® Suppose we want to do feWgs before learning such as

fl@)=0"¢(x), ¢:R"—RP

e Kernel corresponding to ¢: To solve the learning problem and make predictions, we
only need to be able to compute

o) )
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Examples: Polynomial Kernel 5,07 .
T4

Note: we can often compute kernel without actually doing the expansion

e Consider z,2) = (z"2)?
Consider K(x.z) = ( )’ﬁ E‘X—/? A(LL)H"(X(
x

® What is ¢ : R? — R*? L =
= ¢(z) = (27, 2172, T271, T3)
L(\/\

e Check:

i -
% || B 3 L
MU{“@) = ()" ([’“j [%:Q ] (1(2( ~ 7‘7,%1> = rht FoyX 2,y
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/ Jféz )c;'
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Zy, E=)
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Examples: Polynomial Kernel

1
Note: computational complexity is lower ‘(;D‘) 3? )
+ Consider K(r.2) = (o 2 1) zeig”
e What is ¢ : R? — R%?

QZS(CL’) - (17 \/53717 \/535'2,%%,%1332, X221, .’L’%)

o complexity of ¢(z)"T¢(2): O(n?)
¢ complexity of "2 O(n)
Icomplexity of (x'2+1)%: O(n)
e |f using kernel trick, can implement a non-linear feature expansion at no additional cost
® More general: K(z,2) = (z' 2+ 1)4

» complexity of computing corresponding features with ¢: O(n9)
» complexity of computing K: O(n)
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Example: Gaussian Kernel

K(z,z) = exp(—y|z — 2||?)
Some observations:

® non-linear kernel with a lot of flexibility

® corresponds to an infinite dimensional ¢—i.e., cannot implement the corresponding
feature mapping ¢.

[Lecturer: L.J. Ratliff] [EE445 Mod2-L4]

13



oo Tt In Practice: Regularization

| | (A'm)T
e \We often introduce a regularization term in practice: NPPA

)
o
- ~ gk

) = §T0 06y n Ca® i S
D= F(0) 5307 6®) —y®) £ 20 —> "

o 2"

N
e why?: Regularization improves the conditioning of the problem and reduces the

variance of the estimates.

2N

Z

e Taking derivatives and setting them to zero we have

?:( \am _ oy 4)&&)))2[;[,}&\)7 < K0

h= | ~

~ " . 7 G ()
— 9:(/(1 ng %ﬁc‘”\>45("db)> fi_( é(;,s)\jd
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Deriving the a-dependent regularization term

Recall that we converted F'(6) to a cost in terms of a. We will do the same thing for the
regularized cost.
h) 2 g

e [A2]: b\%g(i) for some aq,...,a;,; € R
ot 08 - (2« 46)) (Z < 4067))
’ZZ“ o( 4 (xb) ) @(z”> o XK

,,Mg

(= 3 \/\F/\"\«,_’—\/ Va
KL )
—— Kb‘) _ (4(;7(’“) lef)>
[
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Kernelized Regression Regularized Cost (Ridge Regression)
e

DO\“ g\J/\é\D\: 1 )\% ([ ASS80 [L@;/\Z(;‘bq
N _ = . 2 - T
: flo) =g g By
//

K(lLo(—y) { /H<o( 20 /S [A([( FXT)x :ka
£ = (4ia)y
j[(;l,) = (\er( 0<(‘ 43@“\\\\ 4%%3

® Choose ) via cross validation!
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