EE445 Mod2-Lec3: Least Squares Classification

References:

• [VMLS]: Chapter 14

Outline

- What is classification?
- Different error rates
- least squares classifier
- Multi-class classifiers

Binary Classification with Least Squares

Classification

- M2-L2: goal was to predict an outcome y from some data x
- M2-L3 (Classification): the outcome y takes on only a finite number of values, and hence is sometimes called a label, or in statistics, a categorical.
- Example [Binary Classification]: $y \in \{-1, 1\}$ or $y \in \{0, 1\}$ $y \in \{\text{`True'}, \text{`False'}\}$
- Relationship: $\hat{y} = f(x)$ where $f : \mathbb{R}^n \to \{-1, +1\}$
- Classifier: f is called the **classifier** since it takes in vectors $x \in \mathbb{R}^n$ and classifies them as either f(x) = +1 or f(x) = -1.

Classification Examples

Email spam detection.

- Feature vector: $x \in \mathbb{R}^n$ contains features of an email message like word counts etc.
- ▶ Outcome: y = +1 if an email represented by feature vector x is SPAM and -1 otherwise.

Fraud detection.

- Feature vector: $x \in \mathbb{R}^n$ contains features associated with a credit card user such as average monthly spending, median prices of purchases over last week, etc.
- ightharpoonup Outcome: y = +1 for fradulent transactions, and -1 otherwise.

Document Classification.

- Feature vector: $x \in \mathbb{R}^n$ is a word count (or histogram) vector for a document
- ▶ Outcome: y = +1 if the document has some topic (e.g., politics) and -1 otherwise

Prediction Errors

K>2

• For a given data point (x, y) with predicted outcome $\hat{y} = f(x)$, there are four possibilities:

```
N_{\text{Lp}} 1. True Positive: y=+1 and \hat{y}=+1 2. True Negative: y=-1 and \hat{y}=-1 N_{\text{Lp}} 3. False Positive: y=-1 and \hat{y}=+1 4. False Negative: y=+1 and \hat{y}=-1
```

```
classification]
[correct prediction]
[incorrect prediction, type I error]
[incorrect prediction, type II error]
```

Nto: H trueposition

True positive rate (sensitivity/recall rate):

False positive rate (false alarm rate):

True negative rate (specificity):

Error Rates

Consider data set $(x^{(1)},\ldots,x^{(N)}),\quad (y^{(1)},\ldots,y^{(N)})$ and model f. \forall

 $N = N_0 + N_0$

frection of true classifications that are correct.

[Lecturer: L.J. Ratliff]

• Error rate:

[EE445 Mod2-L3]

Confusion Matrix

- Good classifier: small (near zero) error rate and false positive rate, and high (near one) true positive rate, true negative rate, and precision.
- Which of these metrics is more important depends on the particular application.

	prediction Classification		
outcome	$\hat{y} = +1$	$\hat{y} = -1$	total
y = +1	$N_{ m tp}$	$N_{\mathtt{fn}}$	$\overline{N_{\mathtt{p}}}$
y = -1	$N_{\mathtt{fp}}$	$N_{\mathtt{tn}}$	$N_{\mathtt{n}}$
all	$N_{ t tp} + N_{ t fp}$	$N_{\mathtt{fn}} + N_{\mathtt{tp}}$	N

- Note: sophisticated methods exist for constructing binary classifiers—e.g., logistic regression and support vector machines—which are beyond this lecture.
- Least squares classifier: this is a simple method that works well in many cases
- Process:
 - lacktriangle do ordinary real-valued least squares fitting of the outcome, ignoring that $y \in \{-1, +1\}$

► final classifier (least squares classifier):

$$\hat{y} = f(x) = sign(\hat{f}(x) - x) = \begin{cases} +1, \hat{f}(x) > \alpha \\ -1, \hat{f}(x) \le \alpha \end{cases}$$
eif $\hat{f}(x) = x^{T}\hat{o} + 0$, Roc

[Lecturer: L.J. Ratliff]

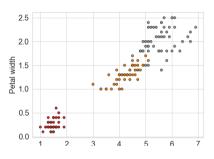
Intuition for Least Squares Classifier

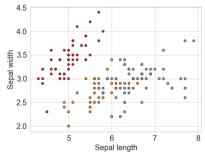
- The value $\tilde{f}(x)$ is a number "near" +1 when y=+1 and near -1 when y=-1
- ullet Forced to guess one of the two possible outcomes, $\mathrm{sign}(ilde{f}(x))$ is a good choice—it is the nearest neighbor of $\tilde{f}(x)$ among $\{-1, +1\}$
- $\tilde{f}(x)$ also tells us our confidence in our assignment

[Lecturer: L.J. Ratliff] [EE445 Mod2-L3] 10

Example

- Iris data set: classical ML data set
- Three types of iris:
 - setosa, versicolour, virginica
- Four features:
 - $ightharpoonup x_1$ sepal length [cm], x_2 sepal width [cm]
 - $ightharpoonup x_3$ petal length [cm], x_4 petal width [cm]
- 50 samples of each type
- Goal: build classifier to detect if iris is virginica or not





Iris Data Set Example: Confusion Matrix

data matrix

$$A = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & x_4^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_1^{(N)} & x_2^{(N)} & x_3^{(N)} & x_4^{(N)} \end{bmatrix}$$

- labels: $y = (\underbrace{-1,\ldots,-1}_{100 \text{ times}},\underbrace{+1,\ldots,+1}_{50 \text{ times}})$
- $\min_{x \in Ax \to y} \|_2^2$ $\min_{x \in A} \|A y\|_2^2$
- Solution:

$$\hat{y} = 3 \epsilon_{\alpha} s (A \hat{\theta})$$

$$\hat{\theta} = (A^{T}A)^{-1} A^{T} y$$

$$\hat{y} = sign (A \hat{\theta} - \alpha)$$

Iris Data Set Example: Confusion Matrix

Precision:

$$\frac{N_{\rm tp}}{N_{\rm tp}+N_{\rm fp}}$$

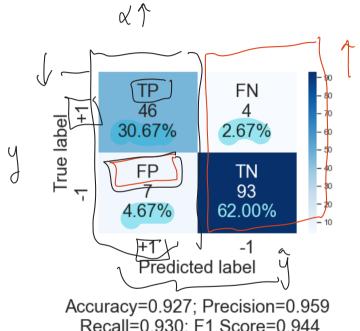
Accuracy:

$$\frac{N_{\tt tp} + N_{\tt tn}}{N}$$

• F1-score is the harmonoic mean of precision (P) and recall (R):

recall: $N_{tp}/(N_{tp}+N_{fn})$

want it near 1



Recall=0.930; F1 Score=0.944

Cross validation

- Just like in the last lecture, we can use cross validation to our least squares classifier.
- see Mod2-Lec3.ipynb for example

Receiver Operating Characteristic [ROC] Curves

Modified Classifier with Skewed Decision Boundary

Modified least squares classifier: skew the decision boundary

$$f(x) = \operatorname{sign}(\tilde{f}(x) - \alpha) = \begin{cases} +1, & \tilde{f}(x) \ge \alpha \\ -1, & \tilde{f}(x) < \alpha \end{cases}$$

- $\alpha > 0$: the guess f(x) = +1 is less frequent \Longrightarrow
- the numbers in the first column (TP, FP) of the confusion matrix go down, and the numbers in the second column (FN,TN) go up
 - i.e., α > 0 ⇒ TPR↑ which is good, yet TPR↓ which is bad
 Note: sum of the numbers in each row is always the same

 - $\alpha < 0$: the guess f(x) = +1 is more frequent TPR which is good, yet FPR which is bad
 - We choose the decision threshold α depending on how much we care about these different metrics in the application

[Lecturer: L.J. Ratliff]

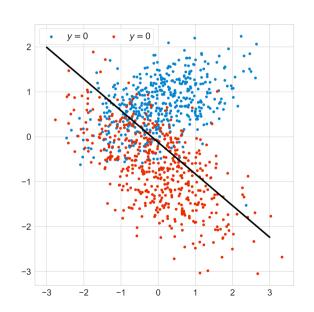
Receiver Operating Characteristic [ROC] Curves

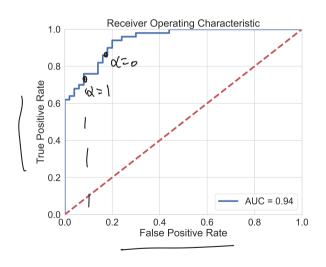
Sign
$$(\tilde{f}(x) - \alpha)$$

- By sweeping α over a range, we obtain a family of classifiers that vary in their true positive and false positive rates
- Two plots of interest:
 - 1. the false positive and negative rates, as well as the error rate, as a function of α
 - 2. [ROC]: true positive rate on the y-axis and false positive rate on the x-axis [More Common to Plot]
- Cool History Fact: The name comes from radar systems deployed during World War II, where y = +1 means that an enemy vehicle (or ship or airplane) is present, and $\hat{y} = +1$ means that an enemy vehicle is detected.

Example: Mod2-Lec3.ipynb, example 3

• Randomly generated binary classification problem: m=1000

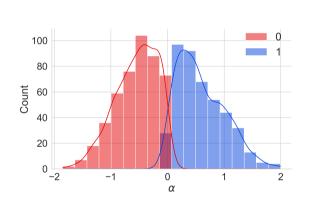


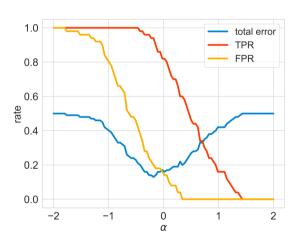


[Lecturer: L.J. Ratliff] [EE445 Mod2-L3] 18

Example: Mod2-Lec3.ipynb, example 3

• Randomly generated binary classification problem: m = 1000





Multi-Class Classification with Least Squares

- [SKlearn]
- K Class Classification: # of labels is greater than two (K > 2)
 - e.g., Likert scale labels: "Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"
 - e.g., Iris data set: three types of iris setosa, versicolour, virginica
- **Def.** A multi-class classifier is a function $f: \mathbb{R}^n \to \{1, \dots, K\}$
 - Given a feature vector x, the classifier f returns $f(x) \in \{1, \dots, K\}$
- Examples
- Handwritten digit classification (MNIST)

 Marketing demographic classification—e.g., "college-educated women aged 25–30", "men without college degrees aged 45–55"

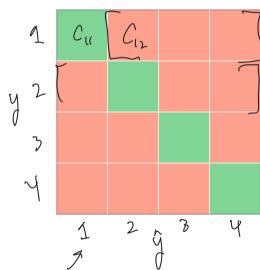
 Disease diagnosis: K possible outcomes for disease

 Document topic prediction: K possible topics

 - \triangleright Detection in communications: translate message into K possible signals

Confusion Matrix

- For a multi-class classifier f and a given data point (x,y), with predicted outcome $\hat{y} = f(x)$, there are K^2 possibilities corresponding to all the pairs of values of y, and \hat{y} .
- Confusion matrix C: for a given training or test data set with N elements, the numbers of K^2 occurrences are arranged into a $K \times K$ matrix where C_{ij} is the number of data points for which y=i and $\hat{y}=j$
- Diagonal of C contains the number of cases for which the prediction is correct



[Lecturer: L.J. Ratliff]

Measures for Prediction Error

- When K=2 we have two types of errors: false positives, false negatives
- More complicated when K > 2: From the entries of the confusion matrix we can derive various measures of the accuracy of the predictions

[Lecturer: L.J. Ratliff] [EE445 Mod2-L3] 23

Overall Error Rate

Overall Error Rate:

$$\frac{1}{N} \sum_{i \neq i} C_{ij} = 1 - \frac{1}{N} \sum_{i} C_{ii}$$

- This measure implicitly assumes that all errors are equally bad.
- In many applications this is not the case; e.g., some medical misdiagnoses might be worse for a patient than others.

True Label Rate

• True Label Rate for Class i:

Least Squares Multi-Class Classifier

- The idea behind the least squares Boolean classifier can be extended to handle multi-class classification problems
- one-vs-others or one-vs-all: for each possible label value, construct a new data set with the Boolean label +1 if the label has the given value, and -1 otherwise.
- Select the one with the highest level of confidence (i.e., best least squares fit):

K Boolean Classifien:
$$f_{\ell}(x)$$
, $l = 1, ..., k$
 $f(x) = avgmax$ $f_{\ell}(x)$; produces the class
 $l = 1, ..., k$

[Lecturer: L.J. Ratliff] [EE445 Mod2-L3] 26

Example

- consider a multi-class classification problem with 3 labels.
- construct 3 different least squares classifiers: a) 1 versus $\{2 \text{ or } 3\}$, b) 2 versus $\{1 \text{ or } 3\}$, and c) 3 versus $\{1 \text{ or } 2\}$.
- e.g., suppose we have

$$\mbox{γ: fixon vec} \qquad \tilde{f}_1(x) = -0.7, \quad \tilde{f}_2(x) = +0.2, \quad \tilde{f}_3(x) = +0.8$$

• f(x) = 3 since $\tilde{f}_3(x)$ is larger than $\tilde{f}_1(x)$ and $\tilde{f}_2(x)$