EE445 Mod2-Lec3: Least Squares Classification

References:

• [VMLS]: Chapter 14

[Lecturer: L.J. Ratliff]

[EE445 Mod2-L3]

Outline

- What is classification?
- Different error rates
- least squares classifier
- Multi-class classifiers

Binary Classification with Least Squares

Classification

- M2-L2: goal was to predict an outcome y from some data x
- M2-L3 (Classification): the outcome y takes on only a finite number of values, and hence is sometimes called a label, or in statistics, a categorical.
- Example [Binary Classification]: $y \in \{-1, 1\}$ or $y \in \{0, 1\}$ $y \in \{$ 'True', 'False' $\}$
- Relationship: $\hat{y} = f(x)$ where $f : \mathbb{R}^n \to \{-1, +1\}$
- Classifier: f is called the classifier since it takes in vectors $x \in \mathbb{R}^n$ and classifies them as either f(x) = +1 or f(x) = -1.

Classification Examples

• Email spam detection.

- Feature vector: $x \in \mathbb{R}^n$ contains features of an email message like word counts etc.
- Outcome: y = +1 if an email represented by feature vector x is SPAM and -1 otherwise.

• Fraud detection.

- Feature vector: $x \in \mathbb{R}^n$ contains features associated with a credit card user such as average monthly spending, median prices of purchases over last week, etc.
- Outcome: y = +1 for fradulent transactions, and -1 otherwise.

• Document Classification.

- Feature vector: $x \in \mathbb{R}^n$ is a word count (or histogram) vector for a document
- Outcome: y = +1 if the document has some topic (e.g., politics) and -1 otherwise

Prediction Errors

- For a given data point (x, y) with predicted outcome $\hat{y} = f(x)$, there are four possibilities:
 - 1. True Positive: y = +1 and $\hat{y} = +1$
 - 2. True Negative: y = -1 and $\hat{y} = -1$
 - 3. False Positive: y = -1 and $\hat{y} = +1$
 - 4. False Negative: y = +1 and $\hat{y} = -1$

[correct prediction] [correct prediction] [incorrect prediction, type I error] [incorrect prediction, type II error]

Error Rates

Consider data set $(x^{(1)}, \ldots, x^{(N)}), (y^{(1)}, \ldots, y^{(N)})$ and model f.

- Error rate:
- *True positive rate* (sensitivity/recall rate):
- False positive rate (false alarm rate):
- *True negative rate* (specificity):
- Precision:

Confusion Matrix

- *Good classifier*: small (near zero) error rate and false positive rate, and high (near one) true positive rate, true negative rate, and precision.
- Which of these metrics is more important depends on the particular application.

prediction			
outcome	$\hat{y} = +1$	$\hat{y} = -1$	total
y = +1	N_{tp}	$N_{\tt fn}$	N_{p}
y = -1	$N_{\mathtt{fp}}$	$N_{ t tn}$	$N_{\mathbf{n}}$
all	$N_{tp} + N_{fp}$	$N_{\tt fn} + N_{\tt tp}$	N

Least Squares Classifier

- Note: sophisticated methods exist for constructing binary classifiers—e.g., logistic regression and support vector machines—which are beyond this lecture.
- Least squares classifier: this is a simple method that works well in many cases
- Process:
 - ▶ do ordinary real-valued least squares fitting of the outcome, ignoring that $y \in \{-1, +1\}$ ▶ i.e.,

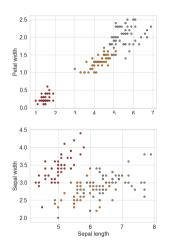
► final classifier (least squares classifier):

Intuition for Least Squares Classifier

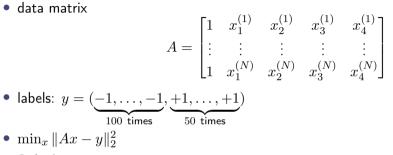
- The value $\tilde{f}(x)$ is a number "near" +1 when y = +1 and near -1 when y = -1
- Forced to guess one of the two possible outcomes, $sign(\tilde{f}(x))$ is a good choice—it is the nearest neighbor of $\tilde{f}(x)$ among $\{-1, +1\}$
- $\tilde{f}(x)$ also tells us our confidence in our assignment

Example

- Iris data set: classical ML data set
- Three types of iris:
 - setosa, versicolour, virginica
- Four features:
 - ▶ x_1 sepal length [cm], x_2 sepal width [cm]
 - ▶ x_3 petal length [cm], x_4 petal width [cm]
- 50 samples of each type
- Goal: build classifier to detect if iris is virginica or not



Iris Data Set Example: Confusion Matrix



• Solution:

Iris Data Set Example: Confusion Matrix

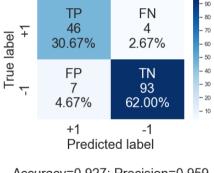
• Precision:

$$\frac{N_{\tt tp}}{N_{\tt tp}+N_{\tt fp}}$$

• Accuracy:

$$\frac{N_{\tt tp} + N_{\tt tn}}{N}$$

 F1-score is the harmonoic mean of precision (P) and recall (R): ^{2PR}/_{P+R}
 ▶ recall: N_{tp}/(N_{tp} + N_{fn})



Accuracy=0.927; Precision=0.959 Recall=0.930; F1 Score=0.944

[Lecturer: L.J. Ratliff]

Cross validation

- Just like in the last lecture, we can use cross validation to our least squares classifier.
- see Mod2-Lec3.ipynb for example

Receiver Operating Characteristic [ROC] Curves

Modified Classifier with Skewed Decision Boundary

• Modified least squares classifier: skew the decision boundary

$$f(x) = \operatorname{sign}(\tilde{f}(x) - \alpha) = \begin{cases} +1, & \tilde{f}(x) \ge \alpha \\ -1, & \tilde{f}(x) < \alpha \end{cases}$$

- $\alpha > 0$: the guess f(x) = +1 is less frequent \implies
 - the numbers in the first column (TP, FP) of the confusion matrix go down, and the numbers in the second column (FN,TN) go up
 - ▶ i.e., $\alpha > 0 \implies$ FPR \uparrow which is **good**, yet TPR \downarrow which is **bad**
 - Note: sum of the numbers in each row is always the same
- $\alpha < 0$: the guess f(x) = +1 is more frequent

▶ \implies TPR \uparrow which is **good**, yet FPR \downarrow which is **bad**

- We choose the decision threshold α depending on how much we care about these different metrics in the application

[Lecturer: L.J. Ratliff]

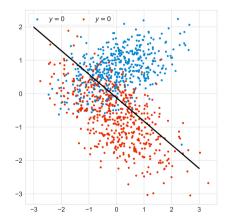
[EE445 Mod2-L3]

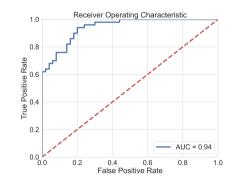
Receiver Operating Characteristic [ROC] Curves

- By sweeping α over a range, we obtain a family of classifiers that vary in their true positive and false positive rates
- Two plots of interest:
 - 1. the false positive and negative rates, as well as the error rate, as a function of α
 - 2. [RDC]: true positive rate on the y-axis and false positive rate on the x-axis [More Common to Plot]
- Cool History Fact: The name comes from radar systems deployed during World War II, where y = +1 means that an enemy vehicle (or ship or airplane) is present, and $\hat{y} = +1$ means that an enemy vehicle is detected.

Example: Mod2-Lec3.ipynb, example 3

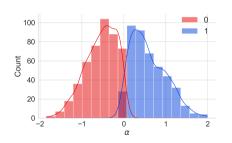
• Randomly generated binary classification problem: m = 1000

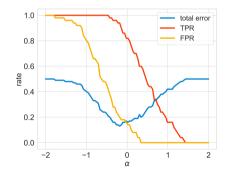




Example: Mod2-Lec3.ipynb, example 3

• Randomly generated binary classification problem: m = 1000





[Lecturer: L.J. Ratliff]

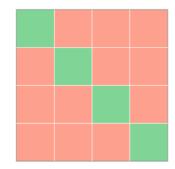
Multi-Class Classification with Least Squares

Multi-Class Classifiers

- K Class Classification: # of labels is greater than two (K > 2)
 - e.g., Likert scale labels: "Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"
 - ▶ e.g., Iris data set: three types of iris setosa, versicolour, virginica
- **Def.** A multi-class classifier is a function $f : \mathbb{R}^n \to \{1, \dots, K\}$
 - Given a feature vector x, the classifier f returns $f(x) \in \{1, \ldots, K\}$
- Examples
 - Handwritten digit classification (MNIST)
 - Marketing demographic classification—e.g., "college-educated women aged 25–30", "men without college degrees aged 45–55"
 - ▶ Disease diagnosis: *K* possible outcomes for disease
 - Document topic prediction: K possible topics
 - Detection in communications: translate message into K possible signals

Confusion Matrix

- For a multi-class classifier f and a given data point (x, y), with predicted outcome $\hat{y} = f(x)$, there are K^2 possibilities corresponding to all the pairs of values of y, and \hat{y} .
- Confusion matrix C: for a given training or test data set with N elements, the numbers of K^2 occurences are arranged into a $K \times K$ matrix where C_{ij} is the number of data points for which y = iand $\hat{y} = j$
- Diagonal of C contains the number of cases for which the prediction is correct



Measures for Prediction Error

- When K = 2 we have two types of errors: false positives, false negatives
- More complicated when K > 2: From the entries of the confusion matrix we can derive various measures of the accuracy of the predictions

Overall Error Rate

• Overall Error Rate:

- This measure implicitly assumes that all errors are equally bad.
- In many applications this is not the case; e.g., some medical misdiagnoses might be worse for a patient than others.

True Label Rate

• True Label Rate for Class *i*:

Least Squares Multi-Class Classifier

- The idea behind the least squares Boolean classifier can be extended to handle multi-class classification problems
- *one-vs-others* or *one-vs-all*: for each possible label value, construct a new data set with the Boolean label +1 if the label has the given value, and -1 otherwise.
- Select the one with the highest level of confidence (i.e., best least squares fit):

Example

- consider a multi-class classification problem with 3 labels.
- construct 3 different least squares classifiers: a) 1 versus {2 or 3}, b) 2 versus {1 or 3}, and c) 3 versus {1 or 2}.
- e.g., suppose we have

$$\tilde{f}_1(x) = -0.7, \quad \tilde{f}_2(x) = +0.2, \quad \tilde{f}_3(x) = +0.8$$

• f(x) = 3 since $\tilde{f}_3(x)$ is larger than $\tilde{f}_1(x)$ and $\tilde{f}_2(x)$