
EE445 Mod2-Lec2: Least Squares Data Fitting

References:
• [VMLS]: Chapter 13
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Outline

• least squares data fitting including feature transformation
• validation and generalization
• feature engineering
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Least Squares Data Fitting: What is it?

• In [Mod2-L1] we saw the "least squares approximate solution" to Ax = b

• Data fitting is one of the most important applications of least squares
• Goal: find a mathematical model, or an approximate model, of some relation, given

some observed data say from experiments or real-world phenomena
• Set-up: Consider x 2 Rn and y 2 R. Suppose we model x and y as being

approximately related by f : Rn ! R:

y ⇡ f(x)

• Components:
I feature vector (independent variables): x
I outcome (response/dependent variable): y

• Challenge: We do not know f and need to approximate it
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Data & Model
• Consider m feature vectors and corresponding scalars:

x(1), . . . , x(m) 2 Rn, and y(1), . . . , y(m) 2 R
• Data pair (observations or samples):

• Model:

• prediction:
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Class of Linear Models
• Linear Models: consider p basis functions or feature mappings fi : Rn ! R and

model parameters ✓i:

• the feature mappings fi are chosen based on our prior knowledge of the problem
• Once they are chosen, they are a known part of the problem of data fitting.
• The remaining unknown is the model parameters ✓ = (✓1, . . . , ✓p)
• Goal:
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Prediction Error
• Consider a fixed value of ✓ and let f(x) =

Pp
j=1 ✓jfj(x)

• prediction error:

• Notation: define the following vectors
I observation:

I prediction:

I residual:
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Prediction Error: Measures
• Root-Mean-Square (RMS) prediction error: • Relative prediction error:
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Least Squares Model Fitting

• Optimization Problem:
• Equivalent Least Squares Problem: with ŷ(i) = f(x(i)), we write

• The j–th column of A is the j–th basis function, evaluated at each of the data points
x(1), . . . , x(m).

• The i–th row gives the values of the p basis functions on the i–th data point x(i).
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Least Squares Model Fitting

• Data fitting as least squares:

min
✓

kA✓ � yk22 [Least Squares Problem]

• Solution: (cf. [Mod2-L1])

• We say that the model parameter values ✓̂ are obtained by least squares fitting on the
data set.

• Minimum square error (MSE): ky �A✓̂k22
• Minimum mean square error (MMSE): 1

mky �A✓̂k22
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Intuition Road Map

• [Univariate] Least squares fit with a constant ! ŷ is average of data y

• [Univariate] Straight line fit (linear/affine model) ! ŷ is linear combination of
average of y and linear scaling of (x� avg(x))

• More complex feature maps such as polynomials, piecewise linear functions etc.
• [Multivariate] Regression
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[Univariate]: Least squares fit with a constant

• set-up: Let p = 1 and f1(x) = 1 for all x
• model: f(x) = ✓1 and A = 1 2 Rm⇥1—i.e., least squares fitting in this case is the

same as choosing the best constant value ✓1 to approximate the data y(1), . . . , y(m)

• Solution:

• The RMS fit to the data (i.e., the RMS value of the optimal residual) is

• Interpretation: the average value and the standard deviation of the outcomes, as the
best constant fit and the associated RMS error, respectively.
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[Univariate]: Straight Line Fit

• Suppose that n = 1—i.e., the feature vector x 2 R is a scalar and so is y 2 R
• Visualization: Data points {(x(i), y(i))}mi=1 can thus be plot in the plane
• Straight Line fit: Let feature mappings be f1(x) = 1 and f2(x) = x so that our

model is
f(x) = ✓1 + ✓2x [Straight-Line]

• Note: this is often called a "linear model" however its really affine

• The data matrix A 2 Rm⇥2 is given by
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[Univariate]: Straight Line Fit (P1)
• Solution: as before we have ✓ = (A>A)�1A>y

• Explicit solution:

[Lecturer: L.J. Ratliff] [EE445 Mod2-L2] 13

A MM LD 1
2 AT

y Egg fit

d

E p

LIFE Il I styaught



[Univariate]: Straight Line Fit (P2)
• Explicit solution:

✓̂ =
1

mx>x� (1>x)2


x>x �1>x
�1>x m

� 
1>y
x>y

�

• Multiply by m2/m2 (put the m2 in the numerator on the scalar term and the 1/m
terms on the vector and matrix, resp.) to get

[Lecturer: L.J. Ratliff] [EE445 Mod2-L2] 14

too t the
Elope

1

Y.IE p.cm 4gf



[Univariate]: Straight Line Fit

• Solution:

✓̂ =
1

rms(x)2 � avg(x)2


rms(x)2 �avg(x)
�avg(x) 1

� 
avg(y)
1
mx>y

�

• ✓̂2 is the slope and can be expressed as follows

✓̂2 =
mx>y � (1>x)(1>y)

mx>x� (1>x)2
=

(x� avg(x)1)>(y � avg(y)1)

kx� avg(x)1k22
=

std(y)

std(x)
⇢

where ⇢ is the correlation coefficient [VMLS, Ch. 3] defined by

⇢ =
(x� avg(x)1)>(y � avg(y)1)

mstd(x)std(y)
and std(x) =

kx� avg(x)1k2p
m
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[Univariate]: Straight Line Fit

• ✓̂1 is the intercept and it also has a simple expression. =)

[Normal Equations]: (A>A)✓ = A>y =) m✓1 + (1>x)✓2 = 1>y

so that
✓̂1 = avg(y)� ✓̂2avg(x)

• Hence,

ŷ = f(x) = avg(y) + ⇢
std(y)

std(x)
(x� avg(x))

• When std(y) 6= 0 we have

ŷ � avg(y)

std(y)
= ⇢

x� avg(x)

std(x)
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Example: Petroleum Consumption

• Data represents a series of samples of world petroleum consumption y at time x(i) = i.
• straight-line fit: ŷ(i) = ✓1 + ✓2i, i = 1, . . . ,m (trend line)

• Slope: ✓2 is the trend

• de-trended time series: y � ŷ

• positive ! time series above straight-line fit
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[Univariate]: Polynomial Fit

• A simple extension beyond the straight-line fit is a polynomial fit—i.e., where

fi(x) = xi�1, i = 1, . . . , p

• f is a polynomial of degree p� 1:

f(x) = ✓1 + ✓2x+ · · ·+ ✓px
p�1

• Data matrix:

A =

2

6664

1 x(1) · · · (x(1))p�1

1 x(2) · · · (x(2))p�1

...
...

...
1 x(m) · · · (x(m))p�1

3

7775
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[Univariate]: Piecewise Linear Fit

• Yet another generalization is the piecewise linear fit: a piecewise linear function with
knot points c1 < c2 < · · · < ck is a continuous function that is affine between the knot
points.

• basis functions: f1(x) = 1, f2(x) = x, fi+2 = (x� ci)+ = max{x� ci, 0},
i = 1, . . . , k
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[Multivariate]: Regression (Multivariate)
• Regression: ŷ = x>� + v, where � is the weight vector and v the offset [VMLS, Ch. 2]
• Let f1(x) = 1 and fi(x) = xi�1, i = 2, . . . , n+ 1 so that p = n+ 1

• Transforming to data fitting model:

• Data matrix:

• General data fitting as regression: x̃ = (f2(x), . . . , fp(x)) so that ŷ = x̃>� + v

• Comparing to linear parametric model:

ŷ = ✓1f1(x) + · · ·+ ✓pfp(x) where v = ✓1, � = (✓2, . . . , ✓p)
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Example: House Price Prediction

• 774 house sales in Sacramento over 5
day period

• RMS fitting error is ⇡$74.8k
• Compare to standard deviation of the

data which is $112.8k
• i.e., basic regression model predicts the

prices substantially better than a
constant model
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Validation & Generalization
[VMLS, 13.2]
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Generalization

• Goal of model fitting: not to just achieve a good fit on the given data set, but rather
to achieve a good fit on new data that we have not yet seen.

• How well can we expect a model to predict y for future or other unknown values of x?

• Generalization ability: a model that makes reasonable predictions on new, unseen
data has generalization ability, or generalizes

• Over-fitting: a model that makes poor predictions on new, unseen data is said to
suffer from over-fit
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Validation

• A simple but effective method for assessing the generalization ability of a model is
called out-of-sample validation.

• Method:
I step 1: divide data into training set and test (validation) set: e.g., randomly assign 80%

of data pairs to training and 20% to testing
I step 2: fit model only on training set
I step 3: evaluate (e.g., via RMS) on test set

• Assessment: If the RMS prediction error on the test set is much larger than the RMS
prediction error on the training set, we conclude that our model has poor generalization
ability.

• Over-fitting: When the RMS prediction error on the training set is much smaller than
the RMS prediction error on the test set, we say that the model is over-fit.
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Model prediction quality & generalization ability: Not the same!

• Caution!: A model can perform poorly and yet have good generalization ability.
• e.g., let ŷ = 0 always.
• This will perform poorly on both training and test data, however the RMS will be similar

meaning it has good generalization ability
• Goal: Performance+generalization: we seek a model that makes good predictions

on the training data set and also makes good predictions on the test data set.
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Generalization & Model Choice

• Key Question: which is the best model? e.g., straight-line fit, polynomial of degree
2,3,4 etc.

• Rule of thumb 1 (least error): we should choose a model that has test set RMS error
that is near the minimum over the candidates

• Rule of thumb 2 (simplest among them): If multiple candidates achieve test set
performance near the minimum, we should choose the ‘simplest’ one among these
candidates.
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Generalization & Model Choice: Example
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Cross-validation

• Cross-validation is an extension of out-of-sample validation that can be used to get
even more confidence in the generalization ability of a model.

• Method: e.g., 10-fold cross-validation
I Divide the data set into 10 sets (called folds)
I Fit the model using folds 1–9 as training data and fold 10 as test
I Fit the model using folds 1–8, 10 as training data and fold 9 as test

I ...
I End up with ten models and ten assessments of these models
I RMS cross-validation error:

rms =

r
✏21 + · · ·+ ✏210

10
, ✏i := rms error of model i

• Cross validation is used for checking of the selection of basis functions.
• Which model to use?: The models should be not too different, so the choice really

should not matter much.
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Cross-validation
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Example: House Price Prediction

• Cross-validation to assess the generalization ability of the simple regression model of
the house sales data [VMLS, §2.3]

• Current RMS error $74.8k; cross-validation will help us answer the question of how the
model might do on different, unseen houses.

• randomly partition the data set of 774 sales
records into five folds, four of size 155 and
one of size 154.
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Limitations

• Caution: the basic assumption that the test data and future data are similar can (and
does) fail in some applications

• e.g.: A model that predicts consumer demand, trained and validated on this year’s data,
can make much poorer predictions next year, simply because consumer tastes shift.

• e.g.: In finance, patterns of asset returns periodically shift, so models that predict well
on test data from this year need not predict well next year.

• Caution: the data set is small =) harder to interpret out-of-sample and
cross-validation results.

• e.g.: out-of-sample test RMS error might be small due to good luck, or large due to bad
luck, in the selection of the test set.
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Feature Engineering
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Feature Engineering

• (cf. [VMLS, §13.1.2]) Fitting a linear parametric model reduces to regression with new
features which are the original features x mapped through the basis (or feature
mapping) functions f1, . . . , fp.

• Feature engineering/selection: the process of choosing or selecting the feature maps
• To choose among candidate basis functions, we use out-of-sample validation or

cross-validation.
• Heuristics:

I Include the constant basis function f1(x) = 1 (equiv. offset in basic regression model)
I Include the original features fi(x) = xi�1, i = 2, . . . , n+ 1 (equiv. starting with the basic

regression model)
• Adding more features vs. reducing them: we can both add more features (i.e.,

p > n) to get a richer model (and select amongst them via cross-validation) or combine
or reduce the number of features to reduce the dimension (i.e., p < n).
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Transforming Features: Standardizing Features

• The first thing to consider is simple transformations of features.
• Standardization: scale and offset

fi(x) =
(xi � b)

ai
, i = 2, . . . , n+ 1

I bi = avg(x)
I ai = std(x)

• ensures that the average of fi(x) is zero and the standard deviation is near one.
• This is called standardizing or z-scoring
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Transforming Features: Windsorizing Features

• When the data include some very large values that are thought to be errors (say, in
collecting the data), it is common to clip or winsorize (for Charles P. Windsor) the
data

• e.g.,

fi(x) =

8
<

:

x, |x|  3
3, x > 3
�3, x < �3
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Transforming Features: Log Transform

• When feature values are positive and vary over a wide range, it is common to replace
them with their logarithms.

• If the feature value also includes the value zero, then a common trick is to replace the
log transform with fi(x) = log(x+ 1)

• Effect: compresses the range of values that we encounter.
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Creating New Features: Expanding Categoricals
• Some features take on only a few values, such as �1 and 1 or 0 and 1, which might

represent some value like presence or absence of some symptom (e.g., Boolean
features).
I Likert scale ([VMLS, page 71]) takes small number of values �2,�1, 0, 1, 2
I Days of the week 0, 1, . . . , 6

• Expanding Categoricals: replace a feature with ` values with a set of `� 1 new
features each of which is Boolean. This simply records whether or not the original
feature has the associated value.

• If all values are zero across the `� 1 new features, then the original feature had the
default value

• Example: suppose x1 2 {�1, 0, 1}. Using the feature value 0 as the default feature,
we replace x1 with two mapped features

f1(x) =

⇢
1, x1 = �1
0, otherwise f2(x) =

⇢
1, x1 = 1
0, otherwise
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Creating New Features: Generalized Additive model

• New features that are nonlinear functions of the original features—e.g.,

min{xi + a, 0} and max{xi � b, 0} where a, b are parameters

• min{xi + a, 0}: amount by which feature xi is below �a, and
• max{xi � b, 0}: amount by which feature xi is above b

• Generalized additive model: if the data is standardized set a = b = 1 so that

ŷ =  1(x1) + · · ·+  n(xn)

where
 i(xi) = ✓n+imin{xi + a, 0}+ ✓ixi + ✓2n+imax{xi � b, 0}
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Creating New Features: Generalized Additive model

• Example: n = 2 original features. Prediction ŷ is a sum of two piecewise-linear
functions, each depending on one of the original features.

• n = 2, a = b = 1, and ✓1 = 0.5, ✓2 = �0.4, ✓3 = 0.3, ✓4 = �0.2, ✓5 = �0.3,
✓6 = 0.2.
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Creating New Features: Products and Interactions

• New features can be developed from pairs of original features, for example, their
product.

• e.g., xixj for i, j = 1, . . . , n and i  j

• Product features are easily interpretable when the original features are Boolean (take
the values 0 or 1)—i.e, xi = 1 means that feature i is present and the new product has
the value one exactly when both features i and j have occurred.
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Creating New Features: Stratefied Models

• Stratefied Model: several different sub-models, and choose the one to use depending
on the values of the regressors.

• e.g., instead of treating gender as a regressor in a single model of some medical
outcome, we build two different sub-models, one for male patients and one for female
patients.

• More generally, we can carry out clustering of the original feature vectors, and fit a
separate model within each cluster.

• To evaluate ŷ for a new x, we first determine which cluster x is in, and then use the
associated model.

• Whether or not a stratified model is a good idea is checked using out-of-sample
validation.
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Advanced Feature Generation

• Custom mappings: driven by application
• Predictions from other models: if there are existing models for the data we can exploit

those
• Distance to cluster representatives z1, . . . , zk: fi(x) = e�kx�zik2/�2

• Random features: random linear combination of original features
• Neural network features: computes transformed features using compositions of linear

transformations interspersed with nonlinear mappings such as the absolute value.
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Summary of Heuristics/Rule-of-Thumb

• Try simple models first. Start with a constant, then a simple regression model, and
so on. You can compare more sophisticated models against these.

• Compare competing candidate models using validation. Adding new features will
always reduce the RMS error on the training data, but the important question is whether
or not it substantially reduces the RMS error on the test or validation data sets.

• Adding new features can easily lead to over-fit. The most straightforward way to
avoid over-fit is to keep the model simple. We mention here that another approach to
avoiding over-fit, called regularization [VMLS, ch. 15]
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Example: House Price Prediction

see Mod2-Lec2.ipynb
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