
EE445 Mod2-Lec1: Introduction to Least Squares

References:
• [VMLS]: Chapter 12
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Least Squares Set-up

• Linear Regression ([VMLS, Ch. 2.3]) is the simplest form of machine learning out there.
• Consider an m× n matrix A—i.e., A ∈ Rm×n—and vectors b ∈ Rm and x ∈ Rn

• Goal: Find a solution to Ax = b—that is, find x such that Ax = b

• ML Intepretation:
▶ A is a matrix of training data—i.e., m is the number of samples, and n is the number of

‘features’
▶ m–dimensional vector b contains ‘target values’ or observations of real world phenomena
▶ n-dimensional vector x is a set of feature weights
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Overdetermined System of Equations→Least Squares Opt

• Goal: Find a solution to Ax = b—that is, find x such that Ax = b

• However, typically A is a ‘tall’ matrix or what we call an ‘over-determined’ system—i.e.,
there are more equations (m) than variables to choose (n).

=

A

x

b

• There is often not an exact solution → formulate an optimization problem to find as
close a solution as possible—i.e., an least squares approximate solution
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Least Squares Optimization Problem

• Least squares optimization problem:

min
x∈Rn

∥Ax− b∥22

• Components of the problem:
▶ decision variable: x ∈ Rn

▶ data: A ∈ Rm×n and b ∈ Rm

▶ objective: ∥Ax− b∥22
• vector of residuals r ∈ Rm: let x̂ be the

solution to the least squares opt problem.

r := Ax̂− b
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Example Applications: Advertising Purchases

• Consider m demographic groups (audiences) that we want to advertise to, with a target
number of ‘impressions’ or views for each group, b

• To reach these groups, we purchase advertising in n different channels (e.g., different
web publishers, radio, print,. . . ), in amounts that given as a vector x ∈ Rn.

• The matrix A ∈ Rm×n specifies the number of impressions in each group per dollar
spending in the channels—i.e., entry aij is the number of impressions in group i per
dollar spent on advertising in channel j.
▶ The j–th column of A gives the effectiveness or reach (in impressions per dollar) for

channel j.
▶ The i–th row of A shows which media demographic group i is exposed to.

• Goal: find x such that ∥Ax− b∥22 is as small as possible (minimized)
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Other Examples

• Stock market prediction:
• Weather forecasting:
• Predicting impact of GPA/SAT scores on college admissions
• Predicting/forecasting housing prices as a function of size, location, etc.
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Combing back to the optimization problem

• Any vector x̂ satisfying the following is a solution (i.e., a least squares approximate
solution):

∥Ax̂− b∥22 ≤ ∥Ax− b∥22 for all (∀) x ∈ Rn

• Importantly, it need not be the case that Ax̂ = b!
• Regression: We say that x̂ is the result of regressing the vector b onto the columns of
A.
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Column Interpretation

A =

 | · · · |
a1 · · · an
| · · · |

 , ai ∈ Rm

• Least squares problem is equivalent to finding a linear combination of the columns that
is closest to b ∈ Rm:

∥Ax− b∥22 = ∥x1 · a1 + · · ·+ xn · an − b∥22

where xi · ai is element-wise multiplication of the vector ai by the scalar xi
• For a solution x̂, we have that Ax̂ = x̂1 · a1 + · · ·+ x̂n · an
• Ax̂ is the closest (in Euclidean distance) to b ∈ Rm among all linear combinations of

vectors a1, . . . , an ∈ Rm
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Row Interpretation

A =

— ã⊤1 —
... · · ·

...
— ã⊤m —

 , ãi ∈ Rn

• Recall that r = Ax− b is the residual vector
• The components of r are then given by ri = ã⊤i x− bi, i = 1, . . . ,m

• The objective can be rewritten as

∥Ax− b∥22 = (ã⊤1 x− b1)
2 + · · ·+ (ã⊤mx− bm)2
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Example

A =

 2 0
−1 1
0 2

 , b =

 1
0

−1

 , m = 3, n = 2

• Ax = b =⇒ {2x1 = 1, −x1 + x2 = 0, 2x2 = −1} a system that has no solution
• Least squares problem: using row interpretation we have

min
x1,x2

{(2x1 − 1)2 + (−x1 + x2)
2 + (2x2 + 1)2}
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Aside: Finding Minima via Calculus [VMLS, App. C]

• Calculus: to find minx f(x), we set d
dxf(x) = 0 and find x∗ that solves the equation,

and check that d2

dx2 f(x)
∣∣
x=x∗ > 0

• Multivariable Case:
▶ ∇f(x) = 0 ⇐⇒ { ∂

∂xi
f(x) = 0, i = 1, . . . , n}

▶ Hessian: ∇2f(x)|x=x∗ > 0 where

∇2f(x) =


∂2f
∂x2

1
· · · ∂f

∂x1∂xn

...
. . .

...
∂f

∂xn∂x1
· · · ∂2f

∂x2
n

 and ∇2f(x)|x=x∗ > 0 ⇐⇒ eigenvalues positive
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Example Continued

min
x1,x2

{(2x1 − 1)2 + (−x1 + x2)
2 + (2x2 + 1)2}

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

x1

x 2

[
∂

∂x1
f(x)

∂
∂x2

f(x)

]
=

[
4(2x1 − 1)− 2(−x1 + x2)
2(−x1 + x2) + 4(2x2 + 1)

]
=

[
0
0

]

=⇒
[
10x1 − 2x2
2x1 − 10x2

]
=

[
4
4

]
=⇒ x̂ =

[
1
3

−1
3

]
• Observe: Ax̂ ̸= b.
• Indeed, r = Ax̂− b = (−1

3 ,−
2
3 ,

1
3) and

∥Ax̂− b∥22 = 2
3
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Least Squares Solution via Calculus

Assumption [A1]: The columns of A are linearly independent—i.e.,∑n
i=1 ciai = 0 ⇐⇒ ci = 0 ∀i = 1, . . . , n

• Any minimizer x̂ of f(x) = ∥Ax− b∥22 must satisfy

∂f

∂xi
(x̂) = 0, i = 1, . . . , n ⇐⇒ ∇f(x̂) = 0

• In matrix form, the gradient is

∇f(x) = 2A⊤(Ax− b) [VMLS, page 184]
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Let’s verify

• Least squares objective in summation form:

f(x) = ∥Ax− b∥22 =
m∑
i=1

 n∑
j=1

aijxj − bi

2

• Let v = ∇f(x) ∈ Rn where vℓ =
∂

∂xℓ
f(x)—i.e.,

vℓ =
∂f

∂xℓ
(x) =

m∑
i=1

2

 n∑
j=1

aijxj − bi

 aiℓ

=

m∑
i=1

2(A⊤)ℓi(Ax− b)i = (2A⊤(Ax− b))ℓ
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Least Squares Solution via Calculus Continued

• Any minimizer x̂ of f(x) = ∥Ax− b∥22 must satisfy

∇f(x̂) = 2A⊤(Ax̂− b) = 0 ⇐⇒ A⊤Ax̂ = A⊤b [normal equations]

• Gram matrix: A⊤A has entries which are the inner products of the columns of A
• [A1] =⇒ A⊤A is invertible [VMLS, §11.5,pg. 214]
• Hence, x̂ = (A⊤A)−1A⊤b is the only solution of the normal equations
• Pseudo-inverse: A† := (A⊤A)−1A⊤ is a left inverse of A
• x̂ = A†b solves Ax = b if the set of equations has a solution otherwise it is said to be

the least squares approximate solution.
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Direct Verification of the Solution

• Let’s check via direct verification: we will show that for any x ≠ x̂ = A†b we have the
estimate

∥Ax̂− b∥22 < ∥Ax− b∥22
• Indeed,

∥Ax− b∥22 = ∥(Ax−Ax̂) + (Ax̂− b)2∥22
= ∥A(x− x̂)∥22 + ∥Ax̂− b∥22 + 2(x− x̂)⊤A⊤(Ax̂− b)

since ∥u+ v∥22 = (u+ v)⊤(u+ v) = ∥u∥22 + ∥v∥22 + 2u⊤v

• Claim: (x− x̂)⊤A⊤(Ax̂− b) = 0
proof: since (A⊤A)x̂ = A⊤b [normal equations], we have

(x− x̂)⊤A⊤(Ax̂− b) = (x− x̂)⊤(A⊤Ax̂−A⊤b) = 0
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Direct Verification of the Solution

• we know that (x− x̂)⊤A⊤(Ax̂− b) = 0

• Coming back to the expression for the objective, we have

∥Ax− b∥22 = ∥A(x− x̂)∥22︸ ︷︷ ︸
≥0

+∥Ax̂− b∥22

• Hence, we deduce
∥Ax̂− b∥22 ≤ ∥Ax− b∥22

• Row form of solution: sometimes its useful to express the solution as

x̂ = A†b = (A⊤A)−1A⊤b =

(
m∑
i=1

ãiã
⊤
i

)−1( m∑
i=1

biãi

)
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Orthogonality Principle

• Ax̂ is the linear combination of columns
of A closest to b

• Residual r = Ax̂− b satisfies the so
orthogonality principle:

(Az) ⊥ r ∀ z ∈ Rn

• Why?
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Let’s Look at the Vector case

b

a

p

• Since p lies along the vector a, we know
that p = xa for some x

• Also, a is perpendicular to
r = b− xa—i.e.,

a⊤(b− xa) = 0 =⇒ xa⊤a = a⊤b

x =
a⊤b

a⊤a
and p = ax = a

a⊤b

a⊤a

• projection matrix: P = a(a⊤a)−1a⊤
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Orthogonality Principle

• Ax̂ is the linear combination of columns
of A closest to b

• Residual r = Ax̂− b satisfies the so
orthogonality principle:

(Az) ⊥ r ∀ z ∈ Rn

• Why?

• First, [normal equations] ⇐⇒ A⊤(Ax̂− b) = 0

• Hence, for any z ∈ Rn, we have

(Az)⊤r = (Az)⊤(Ax̂− b) = z⊤A⊤(Ax̂− b) = 0
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Projection

• The least squares solution is x̂ = (A⊤A)−1A⊤b and the prediction is ŷ = Ax̂

• P = A(A⊤A)−1A⊤ is a projection matrix: it projects on to the subspace formed by
the columns of A
▶ P is a projection matrix if P 2 = P

• Orthogonal decomposition: b = bR(A) + bR(A)⊥ where bR(A) = Ax̂ and
bR(A)⊥ = r = Ax̂− b
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More Examples

Consider

A =

0 1
1 1
2 1

 , b =

60
0


Find the least squares approximate solution to Ax = b.
Solution. First

A⊤A =

[
0 1 2
1 1 1

]0 1
1 1
2 1

 =

[
5 3
3 3

]
and A⊤b =

[
0 1 2
1 1 1

]60
0

 =

[
0
6

]

(A⊤A)−1 =
1

15− 9

[
3 −3
−3 5

]
=

[
1
2 −1

2
−1

2
5
6

]
=⇒ x̂ =

[
1
2 −1

2
−1

2
5
6

]
︸ ︷︷ ︸

(A⊤A)−1

[
0
6

]
=

[
−3
5

]
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Example Continued

• The solution minimizes the distance from
Ax̂ to b:

∥b−Ax̂∥22 =

∥∥∥∥∥∥
60
0

−

 5
2

−1

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
 1
−2
1

∥∥∥∥∥∥
2

2

= 6
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Numerical Examples

see Mod2-N1.ipynb
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