EE445 Mod2-Lec1: Introduction to Least Squares

References:

- [VMLS]: Chapter 12

Least Squares Set-up

- Linear Regression ([VMLS, Ch. 2.3]) is the simplest form of machine learning out there.
- Consider an $m \times n$ matrix A-i.e., $A \in \mathbb{R}^{m \times n}$-and vectors $b \in \mathbb{R}^{m}$ and $x \in \mathbb{R}^{n}$
- Goal: Find a solution to $A x=b$-that is, find x such that $A x=b$
- ML Intepretation:
- A is a matrix of training data-i.e., m is the number of samples, and n is the number of 'features'
- m-dimensional vector b contains 'target values' or observations of real world phenomena
- n-dimensional vector x is a set of feature weights

Overdetermined System of Equations \rightarrow Least Squares Opt

- Goal: Find a solution to $A x=b$-that is, find x such that $A x=b$
- However, typically A is a 'tall' matrix or what we call an 'over-determined' system-i.e., there are more equations (m) than variables to choose (n).

- There is often not an exact solution \rightarrow formulate an optimization problem to find as close a solution as possible-i.e., an least squares approximate solution

Least Squares Optimization Problem

- Least squares optimization problem:

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}
$$

- Components of the problem:
- decision variable: $x \in \mathbb{R}^{n}$
- data: $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$
- objective: $\|A x-b\|_{2}^{2}$
- vector of residuals $r \in \mathbb{R}^{m}$: let \hat{x} be the solution to the least squares opt problem.

$$
r:=A \hat{x}-b
$$

Example Applications: Advertising Purchases

- Consider m demographic groups (audiences) that we want to advertise to, with a target number of 'impressions' or views for each group, b
- To reach these groups, we purchase advertising in n different channels (e.g., different web publishers, radio, print,...), in amounts that given as a vector $x \in \mathbb{R}^{n}$.
- The matrix $A \in \mathbb{R}^{m \times n}$ specifies the number of impressions in each group per dollar spending in the channels-i.e., entry $a_{i j}$ is the number of impressions in group i per dollar spent on advertising in channel j.
- The j-th column of A gives the effectiveness or reach (in impressions per dollar) for channel j.
- The i-th row of A shows which media demographic group i is exposed to.
- Goal: find x such that $\|A x-b\|_{2}^{2}$ is as small as possible (minimized)

Other Examples

- Stock market prediction:
- Weather forecasting:
- Predicting impact of GPA/SAT scores on college admissions
- Predicting/forecasting housing prices as a function of size, location, etc.

Combing back to the optimization problem

- Any vector \hat{x} satisfying the following is a solution (i.e., a least squares approximate solution):

$$
\|A \hat{x}-b\|_{2}^{2} \leq\|A x-b\|_{2}^{2} \quad \text { for all } \quad(\forall) x \in \mathbb{R}^{n}
$$

- Importantly, it need not be the case that $A \hat{x}=b$!
- Regression: We say that \hat{x} is the result of regressing the vector b onto the columns of A.

Column Interpretation

$$
A=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
a_{1} & \cdots & a_{n} \\
\mid & \cdots & \mid
\end{array}\right], \quad a_{i} \in \mathbb{R}^{m}
$$

- Least squares problem is equivalent to finding a linear combination of the columns that is closest to $b \in \mathbb{R}^{m}$:

$$
\|A x-b\|_{2}^{2}=\left\|x_{1} \cdot a_{1}+\cdots+x_{n} \cdot a_{n}-b\right\|_{2}^{2}
$$

where $x_{i} \cdot a_{i}$ is element-wise multiplication of the vector a_{i} by the scalar x_{i}

- For a solution \hat{x}, we have that $A \hat{x}=\hat{x}_{1} \cdot a_{1}+\cdots+\hat{x}_{n} \cdot a_{n}$
- $A \hat{x}$ is the closest (in Euclidean distance) to $b \in \mathbb{R}^{m}$ among all linear combinations of vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$

Row Interpretation

$$
A=\left[\begin{array}{ccc}
- & \tilde{a}_{1}^{\top} & - \\
\vdots & \cdots & \vdots \\
- & \tilde{a}_{m}^{\top} & -
\end{array}\right], \quad \tilde{a}_{i} \in \mathbb{R}^{n}
$$

- Recall that $r=A x-b$ is the residual vector
- The components of r are then given by $r_{i}=\tilde{a}_{i}^{\top} x-b_{i}, \quad i=1, \ldots, m$
- The objective can be rewritten as

$$
\|A x-b\|_{2}^{2}=\left(\tilde{a}_{1}^{\top} x-b_{1}\right)^{2}+\cdots+\left(\tilde{a}_{m}^{\top} x-b_{m}\right)^{2}
$$

Example

$$
A=\left[\begin{array}{rr}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right], \quad b=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right], \quad m=3, n=2
$$

- $A x=b \Longrightarrow\left\{2 x_{1}=1,-x_{1}+x_{2}=0,2 x_{2}=-1\right\}$ a system that has no solution
- Least squares problem: using row interpretation we have

$$
\min _{x_{1}, x_{2}}\left\{\left(2 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(2 x_{2}+1\right)^{2}\right\}
$$

Aside: Finding Minima via Calculus [VMLS, App. C]

- Calculus: to find $\min _{x} f(x)$, we set $\frac{d}{d x} f(x)=0$ and find x^{*} that solves the equation, and check that $\left.\frac{d^{2}}{d x^{2}} f(x)\right|_{x=x^{*}}>0$
- Multivariable Case:
- $\nabla f(x)=0 \Longleftrightarrow\left\{\frac{\partial}{\partial x_{i}} f(x)=0, i=1, \ldots, n\right\}$
- Hessian: $\left.\nabla^{2} f(x)\right|_{x=x^{*}}>0$ where

$$
\nabla^{2} f(x)=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial f}{\partial x_{1} \partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right] \text { and }\left.\nabla^{2} f(x)\right|_{x=x^{*}}>0 \Longleftrightarrow \text { eigenvalues positive }
$$

Example Continued

$$
\min _{x_{1}, x_{2}}\left\{\left(2 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(2 x_{2}+1\right)^{2}\right\}
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} f(x) \\
\frac{\partial}{\partial x_{2}} f(x)
\end{array}\right]=\left[\begin{array}{l}
4\left(2 x_{1}-1\right)-2\left(-x_{1}+x_{2}\right) \\
2\left(-x_{1}+x_{2}\right)+4\left(2 x_{2}+1\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
\quad \Longrightarrow\left[\begin{array}{l}
10 x_{1}-2 x_{2} \\
2 x_{1}-10 x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right] \Longrightarrow \hat{x}=\left[\begin{array}{r}
\frac{1}{3} \\
-\frac{1}{3}
\end{array}\right]
\end{gathered}
$$

- Observe: $A \hat{x} \neq b$.
- Indeed, $r=A \hat{x}-b=\left(-\frac{1}{3},-\frac{2}{3}, \frac{1}{3}\right)$ and $\|A \hat{x}-b\|_{2}^{2}=\frac{2}{3}$

Least Squares Solution via Calculus

Assumption [A1]: The columns of A are linearly independent-i.e., $\sum_{i=1}^{n} c_{i} a_{i}=0 \Longleftrightarrow c_{i}=0 \quad \forall i=1, \ldots, n$

- Any minimizer \hat{x} of $f(x)=\|A x-b\|_{2}^{2}$ must satisfy

$$
\frac{\partial f}{\partial x_{i}}(\hat{x})=0, \quad i=1, \ldots, n \Longleftrightarrow \nabla f(\hat{x})=0
$$

- In matrix form, the gradient is

$$
\nabla f(x)=2 A^{\top}(A x-b) \quad[\text { VMLS, page 184] }
$$

Let's verify

- Least squares objective in summation form:

$$
f(x)=\|A x-b\|_{2}^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right)^{2}
$$

- Let $v=\nabla f(x) \in \mathbb{R}^{n}$ where $v_{\ell}=\frac{\partial}{\partial x_{\ell}} f(x)$-i.e.,

$$
\begin{aligned}
v_{\ell}=\frac{\partial f}{\partial x_{\ell}}(x) & =\sum_{i=1}^{m} 2\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right) a_{i \ell} \\
& =\sum_{i=1}^{m} 2\left(A^{\top}\right)_{\ell i}(A x-b)_{i}=\left(2 A^{\top}(A x-b)\right)_{\ell}
\end{aligned}
$$

Least Squares Solution via Calculus Continued

- Any minimizer \hat{x} of $f(x)=\|A x-b\|_{2}^{2}$ must satisfy

$$
\nabla f(\hat{x})=2 A^{\top}(A \hat{x}-b)=0 \Longleftrightarrow A^{\top} A \hat{x}=A^{\top} b \quad \text { [normal equations] }
$$

- Gram matrix: $A^{\top} A$ has entries which are the inner products of the columns of A
- $[\mathrm{A} 1] \Longrightarrow A^{\top} A$ is invertible [VMLS, $\left.\S 11.5, \mathrm{pg} .214\right]$
- Hence, $\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b$ is the only solution of the normal equations
- Pseudo-inverse: $A^{\dagger}:=\left(A^{\top} A\right)^{-1} A^{\top}$ is a left inverse of A
- $\hat{x}=A^{\dagger} b$ solves $A x=b$ if the set of equations has a solution otherwise it is said to be the least squares approximate solution.

Direct Verification of the Solution

- Let's check via direct verification: we will show that for any $x \neq \hat{x}=A^{\dagger} b$ we have the estimate

$$
\|A \hat{x}-b\|_{2}^{2}<\|A x-b\|_{2}^{2}
$$

- Indeed,

$$
\begin{aligned}
\|A x-b\|_{2}^{2} & =\left\|(A x-A \hat{x})+(A \hat{x}-b)^{2}\right\|_{2}^{2} \\
& =\|A(x-\hat{x})\|_{2}^{2}+\|A \hat{x}-b\|_{2}^{2}+2(x-\hat{x})^{\top} A^{\top}(A \hat{x}-b)
\end{aligned}
$$

$$
\text { since }\|u+v\|_{2}^{2}=(u+v)^{\top}(u+v)=\|u\|_{2}^{2}+\|v\|_{2}^{2}+2 u^{\top} v
$$

- Claim: $(x-\hat{x})^{\top} A^{\top}(A \hat{x}-b)=0$ proof: since $\left(A^{\top} A\right) \hat{x}=A^{\top} b$ [normal equations], we have

$$
(x-\hat{x})^{\top} A^{\top}(A \hat{x}-b)=(x-\hat{x})^{\top}\left(A^{\top} A \hat{x}-A^{\top} b\right)=0
$$

Direct Verification of the Solution

- we know that $(x-\hat{x})^{\top} A^{\top}(A \hat{x}-b)=0$
- Coming back to the expression for the objective, we have

$$
\|A x-b\|_{2}^{2}=\underbrace{\|A(x-\hat{x})\|_{2}^{2}}_{\geq 0}+\|A \hat{x}-b\|_{2}^{2}
$$

- Hence, we deduce

$$
\|A \hat{x}-b\|_{2}^{2} \leq\|A x-b\|_{2}^{2}
$$

- Row form of solution: sometimes its useful to express the solution as

$$
\hat{x}=A^{\dagger} b=\left(A^{\top} A\right)^{-1} A^{\top} b=\left(\sum_{i=1}^{m} \tilde{a}_{i} \tilde{a}_{i}^{\top}\right)^{-1}\left(\sum_{i=1}^{m} b_{i} \tilde{a}_{i}\right)
$$

Orthogonality Principle

- $A \hat{x}$ is the linear combination of columns of A closest to b
- Residual $r=A \hat{x}-b$ satisfies the so orthogonality principle:

$$
(A z) \perp r \quad \forall z \in \mathbb{R}^{n}
$$

- Why?

Let's Look at the Vector case

- Since p lies along the vector a, we know that $p=x a$ for some x
- Also, a is perpendicular to

$$
\begin{aligned}
& r=b-x a \text {-i.e., } \\
& a^{\top}(b-x a)=0 \Longrightarrow x a^{\top} a=a^{\top} b \\
& x=\frac{a^{\top} b}{a^{\top} a} \text { and } p=a x=a \frac{a^{\top} b}{a^{\top} a}
\end{aligned}
$$

- projection matrix: $P=a\left(a^{\top} a\right)^{-1} a^{\top}$

Orthogonality Principle

- $A \hat{x}$ is the linear combination of columns of A closest to b
- Residual $r=A \hat{x}-b$ satisfies the so orthogonality principle:

$$
(A z) \perp r \quad \forall z \in \mathbb{R}^{n}
$$

- Why?
- First, [normal equations] $\Longleftrightarrow A^{\top}(A \hat{x}-b)=0$
- Hence, for any $z \in \mathbb{R}^{n}$, we have

$$
(A z)^{\top} r=(A z)^{\top}(A \hat{x}-b)=z^{\top} A^{\top}(A \hat{x}-b)=0
$$

Projection

- The least squares solution is $\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b$ and the prediction is $\hat{y}=A \hat{x}$
- $P=A\left(A^{\top} A\right)^{-1} A^{\top}$ is a projection matrix: it projects on to the subspace formed by the columns of A
- P is a projection matrix if $P^{2}=P$
- Orthogonal decomposition: $b=b_{\mathcal{R}(A)}+b_{\mathcal{R}(A)^{\perp}}$ where $b_{\mathcal{R}(A)}=A \hat{x}$ and $b_{\mathcal{R}(A)^{\perp}}=r=A \hat{x}-b$

More Examples

Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right]
$$

Find the least squares approximate solution to $A x=b$.
Solution. First

$$
\begin{gathered}
A^{\top} A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
5 & 3 \\
3 & 3
\end{array}\right] \quad \text { and } \quad A^{\top} b=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
6
\end{array}\right] \\
\left(A^{\top} A\right)^{-1}=\frac{1}{15-9}\left[\begin{array}{cc}
3 & -3 \\
-3 & 5
\end{array}\right]=\left[\begin{array}{rr}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{5}{6}
\end{array}\right] \Longrightarrow \hat{x}=\underbrace{\left[\begin{array}{rr}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{5}{6}
\end{array}\right]}_{\left(A^{\top} A\right)^{-1}}\left[\begin{array}{l}
0 \\
6
\end{array}\right]=\left[\begin{array}{r}
-3 \\
5
\end{array}\right]
\end{gathered}
$$

Example Continued

- The solution minimizes the distance from $A \hat{x}$ to b :

$$
\|b-A \hat{x}\|_{2}^{2}=\left\|\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{r}
5 \\
2 \\
-1
\end{array}\right]\right\|_{2}^{2}=\left\|\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]\right\|_{2}^{2}
$$

Numerical Examples

see Mod2-N1.ipynb

